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Abstract
Large and severe wildfires are an observable consequence of an increasingly arid AmericanWest.
There is increasing consensus that human communities, landmanagers, andfiremanagers need to
adapt and learn to live withwildfires. However, amyriad of human and ecological factors constrain
adaptation, and existing science-basedmanagement strategies are not sufficient to address fire as both
a problem and solution. To that end, we present a novel risk-science approach that aligns wildfire
response decisions,mitigation opportunities, and landmanagement objectives by consciously
integrating social, ecological andfiremanagement systemneeds.We use fire-prone landscapes of the
USPacificNorthwest as our study area, and report on and describe how three complementary risk-
based analytic tools—quantitative wildfire risk assessment,mapping of suppression difficulty, and
atlases of potential control locations—can form the foundation for adaptive governance infire
management. Together, these tools integrate wildfire riskwithfiremanagement difficulties and
opportunities, providing amore complete picture of thewildfire riskmanagement challenge.
Leveraging recent and ongoing experience integrating local experiential knowledgewith these tools,
we provide examples and discuss how these geospatial datasets create a risk-based planning structure
that spansmultiple spatial scales and uses. These uses include pre-planning strategic wildfire response,
implementing safe wildfire response balancing riskwith likelihood of success, and alignment of non-
wildfiremitigation opportunities to support wildfire riskmanagementmore directly.We explicitly
focus onmulti-jurisdictional landscapes to demonstrate how these tools highlight the shared
responsibility of wildfire riskmitigation. By integrating quantitative risk science, expert judgement
and adaptive co-management, this process provides amuch-needed pathway to transform fire-prone
social ecological systems to bemore responsive and adaptable to change and live withfire in an
increasingly arid AmericanWest.

Introduction

Fire-prone landscapes of the American West are
social-ecological systems (SES) where feedbacks
among anthropogenic and ecological factors drive the
timing, quantity, and quality of services derived from
the natural environment (Liu et al 2007, Ostrom 2009,

Spies et al 2014). Wildland fire, or the lack thereof, is a
critical agent of change mediated by interactions of
human and ecological systems (Steelman 2016). Indi-
genous peoples embraced fire as a tool to provide a
range of ecosystem services. This relationship changed
following European colonization of North America,
and fire exclusion was increasingly viewed as necessary
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to enhance extraction of timber and other resources
(Greeley 1920, Taylor et al 2016, Pausas and Keeley
2019). The relatively cool, wet climate during much of
the 20thCenturywas favorable tofire exclusion (Littell
et al 2009), and federal and state fire management
policies and societal expectations aligned around the
assumption that fire exclusion was both desirable and
sustainable (Dombeck et al 2004, Hudson 2011). More
recently, increased fuel loadings and tree densities,
lengthening fire seasons, increasing summer tempera-
tures, and declining summer precipitation are making
fires larger and more severe while increasing total
annual area burned (Steel et al 2015, Jolly et al 2015,
Kitzberger et al 2017, Holden et al 2018). These
climate-fire trends are expected to continue in the
coming decades (Westerling et al 2011, Abatzoglou
and Williams, 2016), further challenging the sustain-
ability of the exclusion paradigm.

Today, there is increasing consensus that human
communities, land management agencies, and fire
managers need to adapt and learn to live with fire
(Moritz et al 2014, North et al 2015, Thompson et al
2015a, Schoennagel et al 2017). The US federal gov-
ernment, which typically leads wildfire management
inWestern US landscapes, recognizes this need via the
2014 National Cohesive Wildland Fire Management
Strategy (https://forestsandrangelands.gov/strategy/
thestrategy.shtml). However, the prevailing system of
fire governance remains focused on integrating multi-
ple governmental agencies to coordinate suppression
activities across scales (Davis 2001, Fleming et al 2015).
Short-term benefits to landowners, management
agencies and elected officials incentivize fire exclusion,
with personal risk avoidance being a key factor work-
ing against reintroducing or managing fires for
resource benefit because they are perceived to carry
longer-run risks and management dilemmas. These
incentives are structured into the fire management
system and key performance indicators (Thompson
et al 2018a), reinforcing fire exclusion in spite of scien-
tific and policymaker recognition that fire contributes
positively to ecosystems and long-term risk reduction
(Calkin et al 2015, Abrams et al 2015, Fischer et al
2016).

By successfully suppressing ∼98% of ignitions
under a range of weather conditions, federal fire man-
agers are preferentially selecting for more damaging
fires that burn under more extreme conditions (North
et al 2015). These fires interact with forest and fuel
conditions conducive to high-severity fire in dry for-
ests across the AmericanWest (Reilly et al 2017, John-
ston et al 2018, Zald and Dunn, 2018). Consequently,
large patches of high-severity fire occur on landscapes
(Reilly et al 2017, Stevens et al 2017), adversely impact-
ing ecosystem resilience (Lindenmayer and Sato, 2018,
Stevens‐Rumann et al (2018), water quality (Bladon
2018), timber resources, community exposure to
smoke (Schweizer et al 2019) and responder exposure

to hazards (Dunn et al 2019). Additionally, the
expanding wildland urban interface continues to put
homes and life at risk (Haas et al 2013, Radeloff et al
2018). These adverse wildfire consequences reinforce
the exclusion paradigm by confirming deep-seated
cultural and cognitive biases towards suppression
(Fischer et al 2016, Thompson et al 2018c), and gen-
erate significant external and internal sociopolitical
pressures on agencies to suppress all fire (Canton-
Thompson et al 2008, Donovan et al 2011, Steelman
and McCaffrey 2011, Collins et al 2013, Schultz et al
2019).

Counterproductive wildfire management deci-
sions not only exacerbate the adverse consequences of
wildfires, but also forgo wildfire benefits. Relative to
high-severity fire, low-severity fire typically has benign
or positive effects on ecosystem resilience, water qual-
ity, community smoke exposure and responder expo-
sure to in situ and post-fire hazards (Rodriguez y Silva
et al 2014, Bladon 2018, Dunn et al 2019, Schweizer
et al 2019). Low-severity fires also inhibit fire occur-
rence (Parks et al 2016), spread (Collins et al 2009,
Parks et al 2015) and severity (Parks et al 2014, Larson
et al 2013), while enhancing containment opportu-
nities (Thompson et al 2016b; Beverly 2017). A shift
frommaladaptive to adaptive feedbacks thatminimize
adverse fire consequences while maximizing fire bene-
fits remains an elusive practice at scales commensurate
with need.

Adaptive governance offers a theoretical frame-
work for facilitating change and building resilience in
fire-prone SES (Folke et al 2005, Chaffin et al 2014).
According to Abrams et al (2015), a shift to adaptive
governance of wildfire would entail resolving patholo-
gies in institutional design of the prevailing wildfire
governance, including scalar mismatches, factors that
impede creating cross-scale and within-scale linkages,
and increasing the adaptability of institutions them-
selves. Science-based analytical tools for wildfire plan-
ning and response are not, by themselves, capable of
realizing these kinds of changes. However, they may
contribute to solutions by providing a scalable com-
mon basis of knowledge, identifying landscapes where
fires can be managed for resource benefit with rela-
tively low risk, and by strategically aligning non-wild-
fire mitigation activities to support suppression where
needed and a modified response where possible
(Borchers 2005, Meyer et al 2015). These science-
based analytics also aid cross-boundary planning,
recognizing that risks and risk management are inter-
dependent across adjacent jurisdictions and response
partners (Hamilton et al 2019).

Of key importance in adaptively co-managing
wildfire risk is understanding who the partners are in
risk mitigation, what type of mitigation activities are
appropriate, where mitigation opportunities exist,
when to implement mitigation activities, and why spe-
cific actions should be taken. The objective of this
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manuscript is to provide a basis for answering these
questions by: (1) describing production of spatially
explicit decision support tools that assess wildfire risk
and place that risk within the context of fire manage-
ment, and (2) describing how the combined inter-
pretation of these tools aligns fire and land
management planning across scales in multi-jurisdic-
tional landscapes. We focus more on the latter, lever-
aging our experience in delivering these tools for real-
time decision support on dozens of large fires during
the 2017–2019 fire seasons. Furthermore, these same
analytics have been or are being integrated into cross-
boundary fire response and mitigation planning on
dozens of landscapes across the American West. We
draw on recent work in the Pacific Northwest, USA
(PNW), which the authors were directly involvedwith,
to illustrate key concepts and benefits of integrating
these products.

Spatially explicit risk-science tools

Wildfire risk to valued resources and assets
Quantitative wildfire risk assessments (risk assess-
ments) provide an integrated picture of fire likelihood
and consequences, including comparison of both
market and non-market valued resources and assets
on the basis of net value change (Scott et al 2013). Risk
assessments integrate four key components: burn
probability, fire intensity, susceptibility of resources/
assets, and the relative importance of resources/assets.
Methodologically, the main components include
geospatial analysis, fire simulation, expert judge-
ment elicitation, and multi-criteria decision analysis
(Thompson et al 2013, Thompson et al 2015b). The
primary outputs of interest are raster layers of
conditional net value change (cNVC), quantifying
potential losses and benefits if fire were to occur, and
expected net value change (eNVC), quantifying
those same potential losses and benefits weighted by
burn probability. A summary of this methodology is
provided in table 1.

The PNW risk assessment was completed in spring
of 2018 and explicitly evaluated wildfire risk across
all ownerships and land cover types, recognizing that
wildfires impact most wildlands and routinely spread
across jurisdictional boundaries with diverse land
management objectives (https://oregonexplorer.info/
content/pacific-northwest-quantitative-wildfire-risk-
assessment). Themulti-jurisdictional, regional perspec-
tive is a distinguishing feature of the PNW risk assess-
ment relative to earlier risk assessments that were
largely focused on federal ownerships. Results from the
PNW risk assessment offer an unprecedented opportu-
nity to address wildfire risk strategically across jurisdic-
tions, but requires additional analytics to translate this
information into actionable science.

Quantifying operational wildfiremanagement
challenges and opportunities
Mapping wildfire management challenges and oppor-
tunities supports pre-planning efforts and risk-based
decision making, in addition to facilitating collabora-
tive learning among partners and stakeholders (e.g.
federal, state, local, and tribal governments; conserva-
tion, recreation, and community-based NGOs; forest
and livestock industry representatives; homeowners;
scientists; user groups; and members of the interested
public). Table 2 summarizes themethodology used for
two analytical tools depicting important considera-
tions in fire management. The first analytical product
quantifies relative responder exposure to fire. Previous
exposure analyses relied solely on fire intensity thresh-
olds (e.g. Mitropoulos et al 2017), disregarding
responder accessibility and mobility. To address this,
Suppression Difficulty Index (SDI) weighs fire beha-
vior against road and trail access/egress, including
topographic impediments to mobility, in an expert
weighted system, to map a relative measure of
responder exposure to wildfire (Rodriguez y Silva et al
(2014), O’Connor et al 2016). For the PNW, we
focused on fire-prone landscapes regardless of juris-
diction or ownership, at 90th percentile fire weather
conditions (moderate to high) and topographically
modified wind speed (Finney (2006), Forthofer et al
2014). Suppression difficulty index does not address
all aspects of risk to responders (e.g. safety features,
snag hazards, heat exposure), many of which are being
actively pursued in other research efforts (e.g. Butler,
2014 , Campbell et al 2015, Dunn et al 2019, Penney
et al 2019).

The second analytical tool depicting aspects of the
wildfire management environment is the atlas of
potential control locations (PCLs), which identifies
areas with the highest likelihood of containment suc-
cess. Here, we build from methodologies using boos-
ted regression trees (Elith et al 2008), a machine
learning algorithm, to quantify the relationship
between final containment lines for large fires (>200
ha) and nine predictor variables (see supplemental
table 1 is available online at stacks.iop.org/ERL/15/
025001/mmedia for definitions) indicative of the
complex factors evaluated by fire managers during
large fire containment (O’Connor et al 2017). We
developed predictive models of potential control loca-
tions across 16 modeling zones covering fire prone
landscapes of the PNW (supplemental figure 1). We
made adjustments for overfitting in boosted regres-
sion tree analysis (supplemental figure 2) and
mosaicked predictive maps from all modeling zones
into a continuous dataset.We provide amore compre-
hensive description of our methodology and results as
online supplemental material, including an assess-
ment of the relative influence of each predictor
(supplemental figure 3) and their response curve
(supplemental figure 4). The potential control location
atlas complements the suppression difficulty map to
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identify areas where fire management efforts are likely
to be safer and more effective (Dunn et al 2017, Wei
et al 2019).

Integratingwildfire risks and the operational
environment
Integrating landscape risk assessments with opera-
tional fire management considerations offers impor-
tant perspectives regarding values at risk and fire
managers’ ability to minimize near-term losses while
maximizing long-term risk reduction benefits.
Figure 1 depicts results from the risk assessment,
suppression difficulty and potential control location
analyses. Several important observations relevant to

fire and landmanagement decisions are evident at this
scale. For example, expected net value change maps
highlight landscapes with high values and exposure,
such as the southwestern interior mountains of the
PNW where there are high timber values and critical
northern spotted owl (Strix occidentalis caurina) habi-
tat. In contrast, the risk assessment maps also depict
areas where fire would likely have positive benefits,
such as eastern Oregon and Washington where dry
forests historically experienced frequent fire (Johnston
et al 2018). Fire and land managers could manage fires
for resource benefit in these landscapes, reducing their
potential to transmit fire to adjacent jurisdictions or
areas with higher assessed risk. The risk assessment

Figure 1.Adepiction of the spatial datasets supporting alignment offiremanagement andmitigation opportunities to protect values
at risk in fire prone forests of the PacificNorthwest (PNW), USA. (A)Conditional net value change (cNVC) from the quantitative
wildfire risk assessment depicting the positive and negative consequences when a largefire occurs. (B)Expected net value change
(eNVC) from the quantitative wildfire risk assessment, integrating both the probability offire occurrence and cNVC. (C) Suppression
difficulty index (suppression difficulty) for fire-prone forested landscapes of the PNW. (D)Potential control location atlas depicting
the probability of a feature being a good large fire containment line, across fire-prone forested landscapes of the PNW.Gray areas
currently lack data in this region.
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supports efficient allocation of limited financial and
operational resources by distinguishing among
mapped values based on their exposure to fire, and
help identify appropriate mitigation activities (i.e.
aggressive suppression, managing fires for resource
benefits, hazardous fuels reduction) that meet land
management goals.

Mapping wildfire operational challenges and
opportunities enriches wildfire risk perspectives, and
when integrated with risk assessments provide a more
comprehensive perspective on wildfire risk manage-
ment. Importantly, suppression difficulty and poten-
tial control locations are not synonymous but help
provide context to the wildfire environment. For
example, the southeastern portion of maps in figure 1

is the Northern Great Basin sage-steppe that has low
suppression difficulty but limited containment loca-
tions, reflective of relatively gentle terrain but rapid
wildfire rates of spread through grass and shrub fuels
that typically limit containment locations to road cor-
ridors. Alternatively, the southwestern portion of
maps in figure 1 (i.e. Klamath Mountains) has high
suppression difficulty and low potential control loca-
tions, representing the most operationally challenging
fire management environment. This reality has been
reflected in recent fire history, including but not
limited to the 1987 Silver (∼39 132 ha), 2002
Biscuit (∼202 321 ha), 2017 Chetco Bar (∼77 346 ha),
2018 Klondike (∼70 924 ha) and 2018 Taylor
Creek (∼21 383 ha) fires. These maps enhance risk

Figure 2.Maps depicting the process of summarizing risk into potential wildfire operational delineations (PODs) to identify strategic
wildfire response zones (SRZ). SRZs establish broad response objectives to aid decisions regardingwildfire response in advance of an
ignition, based on values at risk summarized as conditional net value change (cNVC) from a quantitative wildfire risk assessment.
(A)Potential control line atlas. (B)Potential control lines with greater than 0.50 probability of being a containment feature.
(C)Conditional net value change estimated in the quantitative risk assessment. (D)Mean cNVC across the example PODboundaries
demonstrating variation across the landscape and potential for establishing variable response strategies ahead offire occurrence. In
practice, this process integrates analytics with partner andfiremanager engagement to define values at risk and PODboundaries along
effective control locations.
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assessments to support broad-scale allocation of lim-
ited resources and mitigation planning, and benefit
from their scalability to project-level implementation
in both fire response and mitigation activities as
described in the following sections.

Wildfire riskmanagement in action

Engagingfires before they start
All of the aforementioned spatial analytics can be
integrated, distilled, and summarized to provide a

Figure 3.Maps depicting finalfire perimeters in relation to analytics that highlight important considerations during in situwildfire
riskmanagement. Terwilliger Fire) Firemanagers successfully varied their response strategy and tactics to protect private forest assets
to thewest by allocating themajority of their resources along the highest rated potential control locations with lowest suppression
difficulty. Concurrently, firemanagersminimized responder exposure (high suppression difficulty and limited potential control
locations) by forgoing a containment lines to the east in Three SistersWilderness. Taylor Creek Fire)This landscape had limited
containment opportunities and an operationally difficult landscape adjacent to high values at risk. These conditions forecasted the
difficultmanagement challenge and potential for large fire occurrence. Successful containment through aggressive suppression
occurred at areas with higher rated potential control locations and lower suppression difficulty near communities. Thewestflank of
the firewas contained by the Klondike fire burning at the same time.
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common basis on which fire managers, partners and
other stakeholders can collectively produce interpre-
table and actionable plans. One key innovation in this
regard is the development of potential wildfire opera-
tional delineations (PODs) whose boundaries are
relevant to fire operations (e.g. roads, natural barriers,
fuel transitions) within which risks and opportunities
can be summarized (Thompson et al 2016a, Dunn et al
2017, Thompson et al 2018b). By aligning POD
boundaries with high probability potential control
locations (figures 2(a), (b)), our intent is to increase the
likelihood managers can effectively manage fire in
accordance with values at risk. Figure 2 outlines the
process of summarizing risk to identify strategic wild-
fire response zones (SRZs) that aid response decisions
in advance of an ignition. Summarizing wildfire risk at
this operationally relevant scale frames fire manage-
ment objectives and response around likely positive or
negative consequences. PODs form a logical basis for

efficient spatial response strategies (Wei et al 2018,
Wei et al 2019), have been successfully used to guide
real-world response operations (O’Connor and
Calkin 2019), and are currently supporting planning
efforts on landscapes throughout the American West
(Thompson et al 2019).

POD delineation occurs at facilitated workshops
that directly engage with fire responders and stake-
holders at local management units, infusing local
knowledge with analytics to minimize biases and
errors. Our pre-season planning workshops often
include federal and state fire and land managers, Tri-
bal governments, county and local governments, and
informed citizens to integrate local knowledge and
generate broader learning and ownership of the plan-
ning outcome. Researchers subsequently summarize
wildfire risk within PODs at a scale that matches cur-
rent wildfire dynamics (figures 2(c) and (d)), and then
fire managers, partners and stakeholders attribute

Figure 4.Potential operational delineations (PODs) are planning units that summarize risk to inform strategic response decisions.
Aligning PODboundaries along high probability control features increases the likelihood a strategic response will be successful.
However, jurisdictional boundaries rarely alignwith effective control locations such that PODboundariesmay use relatively low
probability control locationswith high suppression difficulty.Hazardous fuels reduction activities could enhance these boundaries to
minimize the potential for fire to spread into adjacent landscapes with high values at risk, thereby highlighting areas among partners
for ‘shared stewardship’ to protect high values at risk.
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them with an appropriate fire management strategy.
The resulting strategic response zones typically fall
into one of three categories: (1)maintain, where wild-
fires are expected to provide positive benefits such that
default strategies should be to manage fires for
resource benefit, (2) restore, where wildfires may pro-
vide positive benefits under the right fire weather con-
ditions, and (3) protect, where wildfires will result in
negative outcomes such that aggressive suppression
should be pursued when and where it is safe and
effective.

Maps of strategic response objectives become a
spatial representation of forest management priorities
and direction, serving as a communication tool and a
means of tracking progress toward more fire-adapted
landscapes. In today’s wildfire environment, strategic
firemanagement decisions are landmanagement deci-
sions that should be reflective of social values. By enga-
ging partners and stakeholders in identifying and
ranking values at risk and appropriate fire response,
our process provides a bridge between communities,
fire managers, and agency administrators regarding
expectations of fire and land management. By sharing
information with diverse governmental and non-gov-
ernmental stakeholders and allowing them to explore
multiple alternative scenarios, this tool may help build
the legitimacy needed to engage in adaptive manage-
ment (Cosens 2013) while sharing the organizational
risk that may allow for constructively addressing
environmental risks (Borchers 2005). Without pre-
determining decisions, pre-planning based on partner
input and analytical data is foundational to aligning
the broader fire-prone SES around a commonpurpose
and intent.

Engagingfires after they start
The analytical tools described herein scale to tactical
wildfire response decisions by providing an objective
approach to determining a safe (suppression diffi-
culty) and effective (potential control location atlas)
response commensurate with values at risk (risk
assessment). Figure 3 depicts tools in relation to the
2018 Terwilliger fire in the western Cascades on the
Willamette National Forest and 2018 Taylor Creek
fire in the Rogue Basin within the KlamathMountain
Ecoregion of southwestern Oregon (supplemental
figure 1). Several of the authors provided these spatial
datasets to fire and forest managers for these inci-
dents through the USDA Forest Service’s Risk Man-
agement Assistance Team (Risk Management
Assistance Teams (2019)). On the Terwilliger fire,
responders aggressively protected private timber
resources to the west by leveraging the best available
potential control locations on public lands. Concur-
rently, the fire burned ‘freely’ to the east because of
limited containment opportunities and high sup-
pression difficulty, despite significant northern

spotted owl habitat at risk. This demonstrates how
the operational environment may hinder fire man-
ager’s ability to protect valued resources safely and
effectively through suppression.

The 2018 Taylor Creek fire example (right panel of
figure 3) depicts a burned area with limited con-
nectivity of potential control locations, high suppres-
sion difficulty, and significant human and ecological
values at risk. The operational environment impeded
suppression success until the fire reached more sub-
stantial control lines, often closer to valleys where
communities reside. Additionally, these maps depict
jurisdictions at increased risk to fire because of the
challenging operational environment, which can be
determined prior to large fire occurrence. Using these
analytical tools in pre-planning and carrying them
through operational use facilitates greater learning by
fire responders while offering feedback to analysts for
improvements. They also provide communication
tools to partners and stakeholders about fire manage-
ment decisions and objectives before and during an
incident.

Aligning non-wildfiremitigation to supportfire
engagement
Non-wildfire mitigation actions are an important
component of effectively managing wildfire risk, and
typically include forest restoration or hazardous
fuels reduction (Fernandes and Botelho 2003, Agee
and Skinner 2005, Raymond and Peterson 2005).
These treatments can reduce burn probability when
their spatial allocation is optimized or exceeds∼40%
of a landscape (Ager et al 2013). However, research
suggests these treatments rarely burn in wildfires
(Barnett et al 2016), that treatment opportunities are
limited across many landscapes (North et al 2012,
North et al 2014), and that implementation rates are
currently too slow tomitigate fire effects across large,
fire-prone landscapes (Barros et al 2019). Therefore,
developing treatment strategies that directly align
with wildfire operations is both efficient and
necessary.

The analytical tools offer an opportunity to allo-
cate non-wildfire mitigation actions strategically,
from landscape to project-level prioritization, for the
explicit purpose of managing the near-term threat
and long-term wildfire risk reduction. As noted pre-
viously, PODs can be landscape-scale planning units
that help direct the allocation of limited financial and
operational resources. Once decision makers, inter-
governmental coalitions, or multi-stakeholder pro-
cesses determine priority landscapes, the risk
assessment, potential control locations and suppres-
sion difficulty maps help downscale resource alloca-
tions to specific project areas. For example,
treatments can target specific values at high risk, such
as private inholdings or critical infrastructure, to
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directly reduce their risk so wildfires can be used to
increase the scale of those treatment effects. Treat-
ments can also reinforce POD boundaries as fuel
break networks to improve the likelihood that pre-
planned strategic response is successful, regardless if
the strategy is aggressive suppression or managing
fires for resource benefit (Ager et al 2013, Oliveira
et al 2016). The need for fuel break network improve-
ment is often realized during the pre-planning POD
delineation process, especially near jurisdictional
boundaries where there are often limited opportu-
nities to contain a fire within a single jurisdiction
(figure 4).

Fire-prone landscapes of the American West
often consist of federal, state, county, city or private
owners that can transmit fire to adjacent jurisdictions
(Palaiologou et al 2019), demonstrating a shared
responsibility in risk mitigation (Fischer et al 2019,
Lidskog et al 2011). Maps of suppression difficulty,
potential control locations and wildfire risk can high-
light areas across jurisdictional boundaries where
wildfire containment is unlikely, despite the need to
protect highly valued resources such as communities
(figure 5(a)). In fact, communities may be imbedded
in multi-jurisdictional landscapes where multiple
federal jurisdictions intermix with a majority pri-
vately-owned landscape that has limited contain-
ment opportunities and an operationally difficult
environment (figure 5(b)). By highlighting these
complex fire management landscapes, all jurisdic-
tions and owners can simultaneously assess their
exposure to wildfire and their contribution to the
exposure of communities. This informs ‘shared stew-
ardship’ among all jurisdictions and ownerships,
especially since private forests can burn with greater
severity than public lands (Zald and Dunn 2018).
Furthermore, these analytics can inform state, county
and local land use planning and zoning regulations
intended to prevent urban growth into high risk areas
without appropriate mitigation activities (Calkin et al
2014, Radeloff et al 2018), further promoting adap-
tive co-management of wildfire risk across scales and
purpose.

Facilitating adaptive co-management

Adaptive management is a fundamental principle of
resilience in SES (Walker et al 2004), but remains
elusive in fire-prone ecosystems for the multitude of
reasons previously described. Breaking out of the
‘rigidity trap’ is a central challenge for contemporary
fire managers (Butler and Goldstein 2010) that will
require institutional change both internal and exter-
nal to federal fire and land management agencies
(Moritz et al 2014, North et al 2015, Thompson et al
2015a). We contend that adaptive co-management
of wildfire risk—entailing shared discovery, risk-

taking, and learning among the various agencies
and actors involved in wildfire governance—is the
necessary process for facilitating change (Nowell et al
2018, Steelman and Nowell, 2019). By engaging
diverse stakeholders, partners, and agencies in
defining the problem, and by providing credible
data and tools to inform civic science processes,
there exists the possibility to generate greater sup-
port for the kinds of organizational risk-taking
needed to promote alternatives to the fire exclusion
paradigm.

Although new technologies will not solve the wild-
fire problem alone, the analytical tools presented here
can be the foundation for adaptive co-management of
wildfires because they directly address wildfire man-
agement, rather than focusing primarily of forest
management (Spies et al 2014). These tools provide
resources to assess the wildfiremanagement landscape
and identify who shares the responsibility to mitigate
risk, what opportunities exist, where the need and
opportunities are, when to allocate limited resources
strategically and efficiently, and why mitigation
actions are proposed or taken. By allowing for site-
specific examination of alternatives to full suppres-
sion, they may help networks of land management
agencies and non-agency stakeholders consider bar-
riers and opportunities posed by prevailing govern-
ance arrangements and identify key leverage points for
change (Abson et al 2017).

Undertaking this work before large fires occur
fosters discussions among partners, stakeholders,
land and fire managers who may otherwise be
focused on responding to an existing wildfire threat.
Having a common understanding of values at risk
within the context of the wildfire operational
environment will daylight the services provided by
fire management, especially in multi-jurisdictional
landscapes, that have historically lacked transparency
between and among agencies and the public. Brid-
ging these existing gaps could help address con-
troversies around both aggressive suppression and
managing fires for resource benefits, especially given
the potential for good decisions to have bad out-
comes. Collaborative forest management continues
to expand across the American West, typically
emphasizing forest management actions to promote
ecosystem resilience in fire-prone SES (Spies et al
2014, Johnston et al 2018). Here we described a pro-
cess of collaborative wildfire risk management that
aligns fire suppression, management of wildfires for
resource benefit, and non-wildfire mitigation activ-
ities to create synergy of expectations between
society, land, and fire managers, so behaviors
shift towards adaptive feedbacks that improve resi-
lience of fire-prone SES in a rapidly changing fire
environment.
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