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1  |  INTRODUC TION

Wildfire frequency and severity shape ecosystems, affecting biodi-
versity and ecosystem services across the globe. In recent decades, 
increasing fire extent and severity have raised concerns about forest 

decline and type conversions (Boer et al., 2020; Coop et al., 2020; 
Parks & Abatzoglou, 2020). Wildfire- driven conversions of forest 
to alternative states can occur when high- severity fire overwhelms 
species’ fire- adaptive traits at local and landscape scales (Johnstone 
et al., 2016; Whitman et al., 2019). In some cases, repeat burning, 
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Abstract
Changing wildfire regimes are causing rapid shifts in forests worldwide. In particular, 
forested landscapes that burn repeatedly in relatively quick succession may be at risk of 
conversion when pre- fire vegetation cannot recover between fires. Fire refugia (areas 
that burn less frequently or severely than the surrounding landscape) support post- fire 
ecosystem recovery and the persistence of vulnerable species in fire- prone landscapes. 
Observed and projected fire- induced forest losses highlight the need to understand 
where and why forests persist in refugia through multiple fires. This research need is 
particularly acute in the Klamath- Siskiyou ecoregion of southwest Oregon and north-
west California, USA, where expected increases in fire activity and climate warming may 
result in the loss of up to one- third of the region's conifer forests, which are the most di-
verse in western North America. Here, we leverage recent advances in fire progression 
mapping and weather interpolation, in conjunction with a novel application of satellite 
smoke imagery, to model the key controls on fire refugia occurrence and persistence 
through one, two, and three fire events over a 32- year period. Hotter- than- average fire 
weather was associated with lower refugia probability and higher fire severity. Refugia 
that persisted through three fire events appeared to be partially entrained by landscape 
features that offered protection from fire, suggesting that topographic variability may 
be an important stabilizing factor as forests pass through successive fire filters. In ad-
dition, smoke density strongly influenced fire effects, with fire refugia more likely to 
occur when smoke was moderate or dense in the morning, a relationship attributable 
to reduced incoming solar radiation resulting from smoke shading. Results from this 
study could inform management strategies designed to protect fire- resistant portions 
of biologically and topographically diverse landscapes.
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also referred to as “reburn” or “short- interval fire” (Buma et al., 2020; 
Prichard et al., 2017), can result in forest loss when species’ resis-
tance (ability to remain relatively unchanged by fire) and resilience 
(ability to recover following fire) mechanisms are overwhelmed 
(Bowman et al., 2014; Holz et al., 2015; Turner et al., 2019). In con-
trast, some places persist as forest when surrounding areas burn at 
higher frequency and/or severity, and these “fire refugia” are import-
ant features of landscapes where high- severity reburn is increasing 
(Collins et al., 2019; Coop et al., 2020). Understanding the biophysi-
cal drivers that support fire refugia in forests worldwide contributes 
to the growing toolbox supporting adaptation in response to global 
change (Krawchuk et al., 2020).

Fire refugia are areas that burn less frequently or severely than 
the surrounding landscape— where dominant elements of pre- fire 
vegetation, like trees, persist relatively unaltered (Krawchuk et al., 
2016; Meddens et al., 2018). Fire refugia (hereafter, “refugia”) can 
support post- fire ecosystem recovery and the persistence of vulner-
able species in fire- prone landscapes (Landesmann & Morales, 2018; 
Robinson et al., 2013; Schwilk & Keeley, 2006). Although repeat 
burning and disturbance refugia have become important research 
foci in recent years (Buma et al., 2020; Krawchuk et al., 2020), rel-
atively little is known about where and why refugia persist as they 
pass through successive fire filters (but see Martinez et al., 2019). 
Conceptually, refugia occur and endure along a gradient ranging 
from transient refugia that survive a single fire event to persistent 
refugia that change relatively little through multiple fire events 
(Meddens et al., 2018). Refugia are more likely to be transient when 
they arise due to stochastic weather and fire behavior conditions 
unique to an individual fire event (Berry et al., 2015; Robinson et al., 
2013). Refugia also occur due to less dynamic factors such as fuel 
arrangement and availability, as well as relatively immutable topo-
graphic features such as rocky outcrops with discontinuous fuels 
(Adie et al., 2017; Landesmann et al., 2015), and landscape depres-
sions, cold- air pools, and poleward- facing aspects where high fuel 
moistures limit fire intensity (Leonard et al., 2014; Román- Cuesta 
et al., 2009; Wilkin et al., 2016). These more enduring features may 
lend support to persistent refugia. However, refugia may be more 
likely to “wink out” after a period of fire exclusion (Downing et al., 
2020), or during severe fire weather conditions (Kolden et al., 2017).

The Klamath- Siskiyou ecoregion of northwest California and 
southwestern Oregon provides an ideal natural laboratory to study 
the drivers of refugia occurrence and persistence. The Klamath- 
Siskiyou (hereafter, “K- S”) is a biodiversity hotspot that supports 
more conifer species than any other region in western North America 
(Cheng, 2004; Whittaker, 1960). Between 1985 and 2017, approxi-
mately 200,000 ha burned twice, and 18,000 ha burned three times 
(Figure 1). K- S conifer forests are vulnerable to loss through repeat 
burning and a phenomenon known as “interval squeeze” or “imma-
turity risk” (Enright et al., 2015; Keeley et al., 1999). High- severity 
burned conifer forests in the K- S typically convert to shrubland 
or hardwood forest (McCord et al., 2020; Odion et al., 2010). This 
early- seral conversion is perpetuated when repeat burning kills re-
generating conifers before seedlings have overtopped competing 

vegetation, developed resistance to fire, and/or become reproduc-
tively mature (Tepley et al., 2017). Fire has been an important eco-
logical process in the K- S for millennia (Colombaroli & Gavin, 2010; 
Mohr et al., 2000), historically contributing to the maintenance of 
patchy, heterogeneous landscapes composed of conifer and hard-
wood forests, shrublands, and grasslands (Odion et al., 2004). 
However, hotter and drier climatic conditions and a lack of surviv-
ing post- fire seed sources undermine the ability of conifer forests 
to recover following high- severity fire (Tepley et al., 2017). Climate 
warming is expected to increase fire frequency in the K- S (Davis 
et al., 2017), and repeat burning is projected to convert about one- 
third of the region's conifer forest to shrublands or hardwood forest 
by the end of the century (Serra- Diaz et al., 2018). In some cases, 
these conversions may provide ecosystem benefits where early- 
seral communities have declined because of afforestation resulting 
from fire suppression (Knight et al., 2020). In others, widespread co-
nifer forest loss may result in undesirable impacts to biodiversity, 
carbon storage, and timber supplies (Miller et al., 2018).

Identifying the areas most likely to persist as forest through 
wildfire requires landscape- scale assessments of the factors that 
drive fire behavior and severity: topography, fuels, and weather. 
Topography influences fire behavior directly as the physical tem-
plate across which fire burns (Rothermel, 1972) and indirectly 

F I G U R E  1  Map of the Klamath- Siskiyou (K- S) ecoregion study 
area in southwest Oregon and northwest California, United States. 
Fire perimeters are from the Monitoring Trends in Burn Severity 
(MTBS) program (https://www.mtbs.gov). Areas burned twice 
during the Landsat era are “Reburn;” areas burned three times 
are “Triple burn.” Mature, conifer- dominated (MCD) forest was 
identified using pre- fire composition and structure data based on 
gradient nearest neighbor (GNN) imputation (Ohmann et al., 2012) 
Colour figure can be viewed at wileyonlinelibrary.com]

https://www.mtbs.gov
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by mediating fuel and vegetation characteristics and fine- scale 
weather and climate (Kane et al., 2015; Wilkin et al., 2016). Low- 
severity fire effects in the K- S have been associated with lower 
elevations that are less likely to burn severely in head fire originat-
ing from lower slope positions (Estes et al., 2017; Grabinski et al., 
2017), as well as north- facing aspects where fuel moistures are 
elevated due to lower incoming solar radiation (Alexander et al., 
2006; Taylor & Skinner, 2003). Fuel influences fire behavior as 
a function of its composition, structure, and arrangement, all of 
which reflect underlying biophysical gradients and disturbance 
history (Agee, 1993). Conifer stands composed of larger trees in 
the K- S tend to burn at lower severities than shrublands and hard-
wood forests (Grabinski et al., 2017; Odion et al., 2004; Thompson 
& Spies, 2009), although these relationships vary with species 
composition and associated flammability (Perry et al., 2011). Top- 
down weather factors such as temperature, wind, and humidity in-
fluence fire behavior as well as the availability of fuels to burn. Fire 
severity in the K- S is strongly mediated by fire weather conditions 
during moderate conditions (Estes et al., 2017), but even more so 
when severe conditions override other fuel and topographic con-
trols (Thompson & Spies, 2009).

Smoke is another factor that may influence fire severity and refu-
gia patterns. Temperature inversions under stable air masses concen-
trate smoke at lower elevations in mountainous landscapes like the 
K- S (Robock, 1988), where fire- atmospheric feedback mechanisms can 
result in persistent inversions that last for days or weeks (Kochanski 
et al., 2019). Beneath inversions, wind speeds are lower due to reduced 
vertical mixing, and temperatures are cooler due to the scattering and 
absorption of incoming solar radiation; above inversions, temperatures 
are elevated when smoke aerosols are sufficiently dense to absorb ra-
diation and radiate heat into the atmosphere (Kochanski et al., 2019). 
These effects are known as “smoke shading” (Lareau & Clements, 
2015). Researchers in the K- S have reported reduced fire severity 
below smoke inversions relative to what would be expected in the ab-
sence of an inversion (Estes et al., 2017; Miller et al., 2012; Taylor et al., 
2009). However, no research to date has directly quantified the influ-
ence of smoke density on fire effects in the K- S or elsewhere.

Here we explore the effects of repeat burning on refugia by ad-
dressing the following question: where and why do conifer forests 
persist in refugia through multiple fire events? We leverage recent 
advances in fire mapping and weather interpolation— combined with 
a novel application of satellite- based smoke imagery— to undertake 
a broadscale retrospective analysis of fire severity through multi-
ple fire events in the K- S. We focus on mature, conifer- dominated 
(MCD) forests because these ecosystems are vulnerable to pro-
jected changes in climate and fire regimes, and because shrublands 
and hardwood forests respond differently to repeat burning due to 
their resprouting ability. Specifically, we evaluate the effects and 
relative importance of topography, fuels, and weather factors on 
the probability of MCD refugia (1) forming during an initial fire, (2) 
persisting through a reburn, and (3) persisting through a triple burn. 
By examining the similarities and differences among these three sce-
narios, we elucidate the dominant controls of refugia occurrence and 

persistence in an ecosystem at risk of widespread fire-  and climate- 
induced forest loss.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The Klamath- Siskiyou ecoregion (Figure 1) is a topographically and 
geologically varied landscape that supports globally important biodi-
versity (Olson et al., 2012). The 48,400 km2 study area is generally 
characterized by a Mediterranean climate with cool, wet winters and 
warm, dry summers. Strong west to east temperature and precipitation 
gradients and complex mountainous topography result in substantial 
climatic variability (Skinner et al., 2006). Mean annual temperature av-
erages 11.5°C; mean annual precipitation averages 1491 mm (PRISM, 
2020). Thunderstorms are common during the summer months, and 
lightning- caused fires account for most of the area burned in the re-
gion over the last half century (Skinner et al., 2006).

Fire was frequent in much of the K- S during the centuries prior to 
European colonization. Conifer forests at low and middle elevations 
burned every 5– 20 years on average, while upper elevations and ri-
parian areas burned somewhat less frequently (Metlen et al., 2018; 
Skinner, 2003; Stuart & Salazar, 2000; Taylor & Skinner, 1998, 2003). 
Pre- colonization fires, including cultural burning by tribal communi-
ties, were characterized by a mixed- severity regime that supported 
exceptionally diverse mosaics of forests, shrublands, and grasslands 
(Halofsky et al., 2011; Metlen et al., 2018; Taylor & Skinner, 1998). 
Institutionalized fire suppression began in the early 20th century, 
and by the 1940s these efforts had radically reduced fire frequen-
cies (Metlen et al., 2018; Stuart & Salazar, 2000; Taylor & Skinner, 
1998, 2003). The relative absence of fire has resulted in widespread 
afforestation and densification, increased fuel accumulations, and 
compositional shifts toward more fire- sensitive species (Knight et al., 
2020; Perry et al., 2011; Taylor & Skinner, 2003). Prolonged fire- free 
periods may have occurred in the region historically (Colombaroli & 
Gavin, 2010). However, modern fire exclusion and resultant changes 
to fuels, in conjunction with longer fire seasons and more extreme 
fire weather (Abatzoglou & Williams, 2016; Westerling, 2016), ap-
pear to be driving increases in fire extent, frequency, and severity 
(Dennison et al., 2014; Steel et al., 2018).

Contemporary MCD forests in the K- S are dominated by Douglas- 
fir (Pseudotsuga menziesii) with lesser amounts of white fir (Abies con-
color), ponderosa pine (Pinus ponderosa), incense- cedar (Calocedrus 
decurrens), sugar pine (Pinus lambertiana), and Jeffrey pine (Pinus jef-
freyi; Appendix S1). These species do not resprout when top- killed 
by fire, requiring seeds dispersed from surviving (or very recently 
living) trees to regenerate. In contrast, less common serotinous or 
semi- serotinous species in the region, such as knobcone pine (Pinus 
attenuata), can reproduce following high- severity fire from in situ 
seed sources.

Common hardwood tree species such as tanoak (Notholithocarpus 
densiflorus), Pacific madrone (Arbutus menziesii), canyon live oak 
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(Quercus chrysolepis), and chinkapin (Chrysolepis chrysophylla) re-
sprout prolifically following fire and are widespread, subdominant 
tree species in MCD forests (Donato et al., 2009). Common resprout-
ing sclerophyll shrub genera include Arcostaphylos and Ceanothus, 
some species of which also recruit abundantly from soil seedbanks 
following fire (Knapp et al., 2012; Odion et al., 2010).

2.2  |  Analysis overview

We developed three statistical models of refugia probability in MCD 
forests, constrained by the temporal availability of fire severity and 
fuels data from Landsat imagery (since 1984) and fire weather and 
smoke data associated with MODIS imagery (since 2002): (1) The 
initial fire model examines refugia probability in MCD forests that 
burned for the first time as early as 2002 and subsequently re-
burned. (2) The reburn model examines refugia probability in MCD 
forests that persisted through an initial fire event as refugia as early 
as 1985 and reburned after 2001. (3) The triple burn model examines 
refugia probability in MCD forests that persisted through both an 
initial and reburn fire event as refugia and burned for a third time 
after 2001.

2.3  |  Mapping MCD fire refugia

Once, twice, and triple burned areas were identified using fire pe-
rimeter data acquired from the Monitoring Trends in Burn Severity 
(MTBS) large fire (>400 ha) database (https://www.mtbs.gov; 
Eidenshink et al., 2007). Following Meigs and Krawchuk (2018), we 
created fire severity maps using the relative differenced normalized 
burn ratio (RdNBR; Miller & Thode, 2007) in 2- year intervals (fire year 
±1 year) from 30 m Landsat time series fitted with the LandTrendr 
algorithm (Kennedy et al., 2010). Image processing was conducted 
in Google Earth Engine (Gorelick et al., 2017). Refugia were identi-
fied as locations displaying little or no fire- induced spectral change 
(Collins et al., 2019; Kolden et al., 2012), based on a refugia thresh-
old of RdNBR ≤166 from Meigs and Krawchuk (2018) corresponding 
to ≤10% tree basal area mortality (Reilly et al., 2017). This RdNBR 
threshold reliably identified refugia for field plots located in our 
study area (overall classification accuracy = 85%, Appendix S2). 
Here, fire refugia are referred to as follows: (1) initial refugia from a 
single fire, (2) transient refugia that do not persist through reburn, (3) 
persistent refugia that survive reburn, and (4) super- persistent refugia 
that survive triple burn (Figure 2).

We identified MCD forest from existing pre- fire composition and 
structure maps developed using gradient nearest neighbor (GNN) 
imputation (Ohmann et al., 2012). GNN maps combine Landsat time 
series and forest inventory data (n = 17,000) to impute plot- level for-
est structure and composition attributes. We classified areas with 
an old- growth structural index of 80 years or greater as mature for-
est (Davis et al., 2015). We identified areas containing >50% basal 
area of live conifer trees ≥2.5 cm diameter at breast height as conifer 

forest. We classified MCD forest using maps produced for the year 
prior to initial fire.

We generated random samples of 30 m pixels for our three 
statistical models of refugia probability. Following Zald and Dunn 
(2018), we imposed a 200 m inter- plot minimum distance con-
straint to reduce the potential for spatial autocorrelation. For the 
initial fire model (n = 15,568), we sampled only areas that were 
MCD forest in the year prior to fire. For the reburn (n = 33,196) 
and triple burn (n = 2156) models, we constrained sampling to 
MCD forest that was also classified as refugia in previous fires. 
We used 50% of each sample for model fitting and 50% for model 
validation. The sampling process for each was independent, and 
ultimately <1% of sampled pixels were included in more than one 
model.

2.4  |  Predictor variables: Fuels, topography, 
weather, prior fire, and smoke

We assessed pre- fire fuels using transformed Landsat imagery and 
GNN forest structure data (Table 1). We utilized the three Tasseled 
Cap (TC) indices— brightness, greenness, and wetness— which are 
transformations of original Landsat bands that capture the three 
major axes of spectral variation (Masek et al., 2008). Previous  
studies in the US Pacific Northwest have demonstrated that  
TC indices are useful for capturing variability in conifer forests 

F I G U R E  2  Maps of mature conifer- dominated (MCD) forest 
and MCD fire refugia extent in a triple burned area. The amount 
of relatively intact MCD forest progressively eroded over multiple 
fire events. Colors represent fire refugia that persisted through 
one (transient, blue), two (persistent, orange), and three (super- 
persistent, black) fire events Colour figure can be viewed at 
wileyonlinelibrary.com]

https://www.mtbs.gov
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(Cohen et al., 2001; Thompson et al., 2007) and for identifying 
refugia (Meddens et al., 2016). We represented live fuel loading, 
stand structure, and fuel arrangement using GNN estimates of bio-
mass, quadratic mean diameter, and stand density.

We derived five terrain metrics to investigate the influence of 
topography on refugia probability: elevation, slope, aspect, soil 
wetness, and topographic position (Table 1). These variables were 
selected from a larger suite of topographic metrics based on a col-
linearity threshold (|r| > 0.7 Appendix S1; Dormann et al., 2013). We 
chose the spatial scale at which to calculate topographic position 
(300 m) based on the explanatory power of different window sizes 
from exploratory analyses. Terrain metrics were calculated based on 
a 30 m digital elevation model using the raster (Hijmans, 2020) and 
RSAGA (Brenning, 2008) packages in the R statistical computing en-
vironment (R Core Team, 2020).

We accounted for the influence of previous fire on refugia prob-
ability with time since fire derived from MTBS fire perimeter data 
and previous fire severity data from Landsat- derived RdNBR values. 
To evaluate how surrounding patterns of refugia influence the prob-
ability of local refugia persistence, we created a refugia focal index 
that is the sum of MCD refugia cells within a 300 m radius, which 

was based on the explanatory power of different window sizes 
from initial modeling. Low and high values represent neighborhoods 
where refugia are sparse and abundant, respectively.

We characterized daily fire weather conditions using interpo-
lated maximum temperature data. We chose maximum tempera-
ture because it was the most robust meteorological variable in 
exploratory analyses (where we also assessed minimum relative 
humidity and energy release component). Each sample pixel was 
assigned a day- of- burn date from daily fire progression maps de-
rived from MODIS hotspot fire detection (Parks, 2014). We then 
extracted day- of- burn maximum temperature values from interpo-
lated, moderate- resolution (~4 km) meteorological grids (gridMET, 
https://www.clima tolog ylab.org/gridm et.html; Abatzoglou, 2013). 
To account for substantial regional temperature variability, we con-
verted raw data to temporally normalized z- scores based on fire 
season climate normals (June 1st to September 30th, 1979– 2018). 
A z- score less than or greater than zero represents a below- average 
or above- average maximum temperature for a specific location, 
respectively.

We quantified wildfire smoke using MODIS aerosol optical depth 
(hereafter, “smoke”) data from the Multi- Angle Implementation of 

TA B L E  1  Predictor variables for boosted regression tree (BRT) analysis

Variable Description Source

Weather

Maximum temperature Z- scores from temporally normalized daily maximum temperature Abatzoglou (2013)

Morning smoke Aerosol optical depth, a measure of atmospheric smoke from MODIS satellite 
imagery

Lyapustin et al. (2018)

Topography

Elevation m DEM; Farr et al. (2007)

Slope degrees DEM

Aspect Beers transformed, 0 = southwest, 1 = northwest/southeast, 2 = northeast (unitless) Beers et al. (1966), DEM

TPI Low values represent valleys, high values represent ridges, unitless (300 m) Weiss (2001), DEM

SWI Increases with potential soil wetness, influences vegetation moisture, composition, 
and structure (unitless)

Olaya (2004), DEM

Fuel

Brightness (TC1) Axis 1 from Tasseled Cap transformation, from LandTrendr imagery (unitless) Crist (1985)

Greenness (TC2) Axis 2 from Tasseled Cap transformation, from LandTrendr imagery (unitless) Crist (1985)

Wetness (TC3) Axis 3 from Tasseled Cap transformation, from LandTrendr imagery (unitless) Crist (1985)

QMD Quadratic mean diameter based on GNN imputation mapping (cm) Ohmann et al. (2012)

TPH Stand density based on GNN imputation mapping (trees ha−1) Ohmann et al. (2012)

Biomass Biomass based on GNN imputation mapping (kg ha−1) Ohmann et al. (2012)

Refugia focala  Neighborhood amount of fire refugia cells within a 300 m radius

TSIFa  1– 30, time since initial fire, derived from MTBS large fire database (years)

TSRb  2– 23, time since reburn, derived from MTBS large fire database (years)

Initial FSa  RdNBR fire severity based on Landsat satellite mapping (unitless) Miller and Thode (2007)

Reburn FSb  RdNBR fire severity based on Landsat satellite mapping (unitless) Miller and Thode (2007)

TPI, topographic position index; SWI, soil wetness index; GNN, gradient nearest neighbor; DEM, digital elevation model. The response variable for all 
BRT modeling is a binary classification (refugia or non- refugia) of burn severity derived from Landsat satellite data (see Section 2).
aVariable included only in the reburn and triple fire models.
bVariable included only in the triple fire model.

https://www.climatologylab.org/gridmet.html
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Atmospheric Correction algorithm (MAIAC). MAIAC produces daily 
smoke data using a physical atmospheric- surface model and stored 
spectral, spatial, and thermal signatures for 1 km gridded cells 
(Lyapustin et al., 2018). We restricted our analysis to data from the 
morning overpass (TERRA satellite) because we were interested in 
the influence of latent smoke likely trapped by thermal inversions 
rather than smoke from active fires during the peak afternoon burn 
period (Figure 3). Because smoke data were sometimes not avail-
able for our entire study area each day (depending on satellite orbit 
paths), we temporally averaged (day- of- burn ±2 days) smoke imag-
ery to produce region- wide maps. This temporal smoothing is con-
sistent with the uncertainty associated with day- of- burn estimates 
from MODIS hotspot data (Parks, 2014). Additionally, the MAIAC 
algorithm is sometimes unable to retrieve smoke data in and around 
actively burning fires when smoke is particularly dense (David et al., 
2018; Superczynski et al., 2017). Because these missing data were 
non- random and more likely to be associated with active fires in our 
study area, we interpolated smoke values for these locations using 
an inverse distance- weighted approach. Interpolated values were 
only assigned to areas where raw smoke data were absent. We con-
ducted all MAIAC data processing and interpolation using Google 
Earth Engine.

Fire activity above an inversion layer may be elevated due to 
higher temperature and lower relative humidity relative to condi-
tions below the inversion or conditions in the absence of an inver-
sion (Robock, 1988; Sharples, 2009). To account for this effect, 
we adopted a 1300 m elevation threshold developed by Estes 
et al. (2017) based on K- S weather station data and input from 
local land managers. Following interpolation, locations >1300 m 
were assigned a smoke value of zero based on the assumption 
that smoke at these elevations was more likely to be the product 
of actively burning fire rather than latent smoke settled beneath 
inversions.

2.5  |  Modeling fire refugia probability

We modeled refugia probability as a binary response (refugia, non- 
refugia) using Boosted Regression Trees (BRT). BRT models are well- 
suited to ecological modeling because they allow for interactions 
and are relatively insensitive to collinearity and outliers (Dormann 
et al., 2013; Elith et al., 2008). Several recent studies have success-
fully used BRT to model complex, nonlinear relationships between 
biophysical factors and fire severity (e.g., Krawchuk et al., 2016; 
Meigs et al., 2020; Zald & Dunn, 2018).

Models shared the same suite of topographic, fuel, and weather 
variables (Table 1). Our reburn and triple burn models also included 
the refugia focal index, time since initial fire, and initial fire severity. 
The triple burn model further included time since reburn and reburn 
fire severity.

We also fit submodels for each variable category to evaluate the 
relative importance of fuels, weather, and topography. We included 
time since fire and prior fire severity in the fuels submodels because 
these factors primarily influence fuel reaccumulation between fires 
(Coppoletta et al., 2016). The refugial focal index was included in the 
reduced fuel submodels because it can be interpreted as a measure 
of neighborhood fuel composition and structure. Morning smoke 
was included in the weather submodels.

BRT model runs were parameterized following Krawchuk et al. 
(2016) using random subsets of the data to produce a minimum of 
1000 trees (learning rate = 0.001, tree complexity = 5, bag frac-
tion = 0.5). We evaluated model performance based on two crite-
ria: (1) cross- validated percentage deviance explained and (2) area 
under the curve of the receiver operating characteristic (hereafter 
“AUC”) from both cross- validation and independent validation data-
sets. AUC is a synthetic metric that evaluates model sensitivity and 
specificity to assess the capacity to correctly predict the presence 
or absence of refugia. We interpreted AUC values to indicate fair 

F I G U R E  3  (a) MODIS Terra true 
color imagery from the morning of 
August 26, 2017 shows morning smoke 
concentrated in the Klamath and Salmon 
River drainages, likely due to the presence 
of a thermal inversion. (b) Transient (red) 
and persistent (yellow) refugia from the 
1987 Fort Copper and 2017 Abney fires. 
The relatively long (30 years) period 
since initial fire may have reduced the 
probability of more initial fire refugia 
persisting through reburn Colour figure 
can be viewed at wileyonlinelibrary.com]



3648  |    DOWNING et al.

(>0.6– 0.7), good (>0.7– 0.8), very good (>0.8– 0.9), or excellent (>0.9) 
model performance (Krawchuk et al., 2016; Meigs et al., 2020). We 
quantified the relative influence of each variable to identify the fac-
tors that most strongly control refugia probability, and we used par-
tial dependence plots to examine the effect of predictor variables 
on refugia probability after accounting for all other variables in the 
model. We assessed interactive effects of predictor variables on 
refugia probability using three- dimensional surface plots (Appendix 
S2), presenting results for a subset with the strongest interac-
tions in each model. BRT modeling was performed using the gbm 
(Greenwell et al., 2020) and dismo (Hijmans et al., 2020) R packages.

3  |  RESULTS

3.1  |  Initial fire refugia

Refugia accounted for 31% (9590 ha) of the total 30,953 ha of MCD 
forest in 25 fires that burned for the first time between 2002 and 
2015. Overall model performance was good (Table 2). The weather 
submodel explained more variation than either the fuels or to-
pography submodels. Maximum temperature was the single most 
important variable and displayed a strongly negative relationship 
with refugia probability (Figure 4). Low elevations were positively 
associated with refugia, whereas intermediate elevations had the 
lowest probability of refugia. The association between morn-
ing smoke and refugia probability was strongly positive. Refugia 
probability was positively associated with TC wetness and topo-
graphic soil wetness and negatively associated with TC brightness. 
Refugia were less likely to occur on convex landforms and in very 
high- density stands with small diameter trees. Morning smoke had 
the strongest positive effect on refugia probability when maxi-
mum temperatures were much higher than average (Appendix S2: 
Figure 1).

3.2  |  Reburn: persistent refugia

Persistent refugia accounted for 45% (20,349 ha) of the 45,788 ha 
of reburned MCD refugia within 105 reburns (unique combina-
tions of first and second fire events). Overall model performance 
was good (Table 2). The fuels submodel, which included time since 
initial fire and initial fire severity, explained more variation than 
either the topography or weather submodels. The single most im-
portant variable was time since initial fire, which was generally 
negatively associated with persistent refugia probability (Figure 5). 
Consistent with the initial fire model, reburn refugia probability 
was positively associated with TC wetness and negatively asso-
ciated with maximum temperature, topographic position, and TC 
brightness. Persistent refugia probability was highest when refu-
gia initially burned at very low severity (RdNBR≈25). The relation-
ship between reburn refugia probability and morning smoke was 
less influential and hump shaped; probabilities were highest at 
moderate smoke levels. In contrast to the initial fire model, refugia 
probability was positively associated with elevation, but elevation 
was substantially less influential than in other models. Locations 
with a higher density of neighboring refugia (higher refugia focal 
values) were more likely to persist through reburn as refugia than 
locations where nearby refugia were sparse or absent (low refugia 
focal values). Very low initial fire severity had a substantial posi-
tive effect on refugia probability within 20 years of initial fire but 
had little effect in older fires ( Appendix S2: Figure 4).

3.3  |  Triple burn: super- persistent refugia

Super- persistent refugia accounted for 73% (1347 ha) of the 1851 ha 
of MCD reburn refugia within 16 triple burn events (unique combi-
nations of first, second, and third fire events). Overall model per-
formance was good (Table 2). The weather submodel explained less 

TA B L E  2  Overall deviance explained, mean ROC, and variables with the greatest relative influence for full and reduced initial fire, reburn, 
and triple burn models. Columns V1, V2, and V3 represent the first, second, and third most influential variables, respectively, in each model. 
Variables are defined in Table 1

Model Variable class CV Dev. Expl. CV ROC Valid. ROC V1 V2 V3

Initial fire Topography 9% 0.68 0.68 Elevation SWI TPI

Fuels 14% 0.71 0.71 TPH QMD Wetness

Weather 18% 0.76 0.63 TMax Smoke NA

Full model 26% 0.80 0.73 TMax Elevation Smoke

Reburn Topography 2% 0.59 0.59 TPI Elevation Slope

Fuels 9% 0.68 0.69 Time since fire Initial FS Wetness

Weather 6% 0.64 0.61 TMax Smoke NA

Full model 14% 0.72 0.70 Time since fire TMax Wetness

Triple burn Topography 19% 0.68 0.70 Elevation Aspect TPI

Fuels 26% 0.72 0.74 Reburn FS Wetness TSR

Weather 18% 0.69 0.62 TMax Smoke NA

Full model 34% 0.73 0.76 TMax Wetness Reburn FS
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F I G U R E  5  The relative influence for variables included in the reburn model, color- coded according to variable class. (a) Variables with 
the highest relative influence values most strongly affected fire refugia probability. (b– j) Partial dependence plots for the top nine model 
predictors in order of decreasing relative influence. Note that the scales vary on the y- axes, which represent the logit probability of fire 
refugia after accounting for the influence of other predictor variables. Values on the x- axis are bound by the 1% and 99% sample quantiles 
of the observed data to reduce the influence of very rare observations resulting in predictions that distort the representation of modeled 
relationships. Density plots above each panel represent the distribution of observed values for each variable. Partial dependence plots for 
less influential model variables can be found in Appendix S1 Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  4  The relative influence for variables included in the initial fire model, color- coded by variable class. (a) Variables with the 
highest relative influence values most strongly affected fire refugia probability. (b– j) Partial dependence plots for the top nine model 
predictors in order of decreasing relative influence. Note that the scales vary on the y- axes, which represent the logit probability of fire 
refugia after accounting for the influence of other predictor variables. Values on the x- axis are bound by the 1% and 99% sample quantiles 
of the observed data to reduce the influence of very rare observations resulting in predictions that distort the representation of modeled 
relationships. Density plots above each panel represent the distribution of observed values for each variable. Partial dependence plots for 
less influential model variables can be found in Appendix S1 Colour figure can be viewed at wileyonlinelibrary.com]
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variability in the data than either the fuels or topography models. 
Substantially more variation was explained in the triple burn topog-
raphy submodel (19%) than in the initial fire (9%) or reburn (2%) mod-
els, and five of the 10 most influential variables in the triple burn 
model were topographic. The three most important variables were 
maximum temperature, TC wetness, and elevation, all of which dem-
onstrated associations that were fairly consistent with the reburn 
model results (Figure 6). Super- persistent refugia probability was 
positively associated with moderate to steep slopes, dense morning 
smoke, and areas with high potential hydrologic pooling. Consistent 
with the reburn model, the probability of super- persistent refugia 
peaked in concave topographic positions where previous fire burned 
at very low severity (RdNBR≈25). Concave landforms had a substan-
tial positive effect on refugia probability when temperatures were 
well above average (Appendix S2: Figure 7).

4  |  DISCUSSION

We reveal key factors influencing the persistence of forests in refu-
gia across a highly fire- prone biodiversity hotspot, and highlight that 
some refugia appear to build up resistance as they pass through 
multiple fire filters. The distribution of refugia was nonrandom and 
shaped by multiple weather, topographic, and fuel factors. Hotter- 
than- average fire weather was associated with lower refugia occur-
rence and persistence, an indication that climate warming may be a 

mechanism responsible for refugia loss. Moderate to dense morning 
smoke— likely associated with temperature inversions— had a strong 
positive effect on refugia probability, particularly when tempera-
tures were above average. The atmospheric conditions conducive 
to persistent inversions in the K- S have become considerably less 
common over the past century, which may be weakening a key 
mechanism of refugia persistence (Johnstone & Dawson, 2010). 
Super- persistent refugia appear to be at least partially entrained by 
landscape features that offer protection from fire, suggesting that 
topographic variability is an important stabilizing factor for the dis-
tribution of mature conifer forest as fire activity increases.

Our results demonstrate that repeat burning decreases the 
abundance of refugia within fire perimeters, which is a key con-
trol on post- fire regeneration for tree species reliant on surviving 
individuals for seed sources (Coop et al., 2019). Increasing fire ac-
tivity and decreasing post- fire regeneration rates associated with 
climate warming may be compounded when these same climatic 
conditions manifest as severe fire weather resulting in the loss of 
refugia and the seed sources they contain (Abatzoglou & Williams, 
2016; Rodman et al., 2020). Observed and projected fire- induced 
shifts in the K- S are similar to those increasingly documented in 
forests worldwide. Montane forests in the US Rocky Mountains, 
eucalypt forests in Australia, conifer forests in the boreal zone, 
and others are vulnerable to short fire- free intervals and slow 
post- fire regeneration following high- mortality events (Bowman 
et al., 2014; Turner et al., 2019; Whitman et al., 2019). Although 

F I G U R E  6  (a) The relative influence for variables included in the Triple model, color- coded according to variable class. (a) Variables with 
the highest relative influence values most strongly affected fire refugia probability. (b– j) Partial dependence plots for the top nine model 
predictors in order of decreasing relative influence. Note that the scales vary on the y- axes, which represent the logit probability of fire 
refugia after accounting for the influence of other predictor variables. Values on the x- axis are bound by the 1% and 99% sample quantiles 
of the observed data to reduce the influence of very rare observations resulting in predictions that distort the representation of modeled 
relationships. Density plots above each panel represent the distribution of observed values for each variable. Partial dependence plots for 
less influential model variables can be found in Appendix S1 Colour figure can be viewed at wileyonlinelibrary.com]
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fire- induced forest loss is a major concern globally, increasing 
fire activity and reductions in mature forest types can also have 
ecological benefits. In the K- S, moderate-  or high- severity fire re-
sulting in the loss of MCD forest may positively contribute to the 
restoration of the historical forest and non- forest patch mosaic, 
and support early- seral species like knobcone pine that rely on 
periodic high- severity fire to maintain their ranges (Reilly et al., 
2019).

Some refugia appeared to become increasingly fire resistant 
as MCD forest passed through multiple fire filters. The percent-
age of area that persisted as refugia increased by approximately 
50% between initial fire (31%), reburn (45%), and triple burn (73%). 
Increasing resistance to fire over successive fire events is likely the 
product of a combination of factors observed in other forest ecosys-
tems, including the progressive restriction of persistent refugia into 
more fire- resistant landscape positions (Wood et al., 2011), as well 
as the self- limiting effect of short fire intervals (Coppoletta et al., 
2016; Parks et al., 2014).

Topography was an important control on the distribution of 
super- persistent refugia, a result consistent with the influence 
of terrain on refugia occurrence and persistence in a wide va-
riety of forests in North and South America, Africa, Europe, and 
Australia (Adie et al., 2017; Collins et al., 2019; Krawchuk et al., 
2016; Landesmann et al., 2015; Román- Cuesta et al., 2009). As 
we found here, refugia in forest ecosystems are frequently associ-
ated with concave landforms (e.g., gullies) in wetter settings where 
fuels are moister and less available to burn (Leonard et al., 2014). 
The relatively strong topographic signal detected in our triple burn 
model provides evidence that contemporary repeat burning may 
strengthen the feedbacks between underlying topoedaphic tem-
plates and fire severity (Kane et al., 2015; Martinez et al., 2019). 
The stability of these feedbacks in the K- S and elsewhere may have 
historically contributed to the development of old forest structure 
(Camp et al., 1997), the persistence of fire- sensitive species in topo-
graphic refugia (Schwilk & Keeley, 2006), and the maintenance of 
early- seral communities dependent on recurrent high- severity fire 
(Odion et al., 2010). The lack of a stronger topographic signal in our 
reburn models may be due in part to critical fire weather (79% of 
reburn samples burned on hotter- than- average days), which can re-
duce the influence of topography and decrease the predictability of 
refugia (Collins et al., 2019; Krawchuk et al., 2016). It is also possible 
that the muted effect of topography in the initial fire and reburn 
models may be related to a homogenizing effect of fire suppression, 
as prior studies report that topography did not strongly influence 
reburn fire severity where fire had been reintroduced after a pro-
longed period of exclusion (Coppoletta et al., 2016; Thompson & 
Spies, 2009).

The strong influence of prior fire severity was somewhat un-
expected given that our reburn and triple burn analyses were 
constrained to a narrow range of prior fire effects (RdNBR ≤ 166), 
although generally similar self- reinforcing behavior has been re-
ported in prior studies (Collins et al., 2009; Grabinski et al., 2017; 
Harris & Taylor, 2017). It is unlikely that very light burning in refugia 

meaningfully shifted forest composition and structure back toward 
the less dense, more fire- resistant norms that historically character-
ized much of the region's conifer forests (Knight et al., 2020; Taylor 
& Skinner, 1998, 2003). However, very low- severity fire in refugia 
may have provided an optimal balance between reducing surface 
fuels while minimizing overstory tree mortality, thereby inhibiting 
post- fire shrub or hardwood responses and reinforcing a structure 
more resistant to canopy- killing fire effects.

Our finding that refugia persistence is negatively associated 
with time since prior fire is consistent with studies reporting 
lower reburn severity with shorter fire return intervals (Collins 
et al., 2009; Parks et al., 2014), and the importance of time since 
fire as a mediator of fire effects in forest ecosystems globally 
(Collins et al., 2019; Héon et al., 2014; Prichard et al., 2017). Time 
since fire is generally interpreted as a proxy for fuel accumulation 
(Coppoletta et al., 2016), a process that rapidly (5– 10 years) dimin-
ishes the self- limiting effect of fire in the K- S (Donato et al., 2013). 
Refugia persistence through reburn was most probable at short 
fire intervals (<20 years), which is consistent with historic norms 
reconstructed from dendrochronological evidence (Taylor & 
Skinner, 1998, 2003). A small decrease in the probability of refugia 
persistence at 15 years since fire in the reburn model (Figure 5b) 
corresponds to the interval between the most widespread fire 
years in the region (1987– 2002– 2017). This suggests that longer- 
term or larger- scale phenomenon (e.g., multi- year drought) unac-
counted for here may contribute to both widespread fire activity 
as well as refugia loss.

Given the relatively small degree of fire- induced change in re-
fugia, the importance of time since fire may reflect neighborhood 
effects, as fuels— particularly resprouting shrubs and hardwoods— 
rapidly reaccumulate in surrounding higher- severity burned areas. 
This interpretation is supported by our finding that refugia were 
positively associated with more contiguous patches of intact co-
nifer forest (lower TC brightness) and neighborhoods with larger 
amounts of surrounding refugia (higher refugia focal values). Closed 
canopy forests in the K- S tend to burn at lower severity than shrub-
lands (Grabinski et al., 2017; Odion et al., 2004; Thompson & Spies, 
2009), and high- severity fire may have had a greater propensity to 
spread into small, isolated refugia embedded in a more pyrophilic 
matrix.

Smoke density strongly influenced refugia probability, illustrat-
ing an important negative feedback loop between fire and its ef-
fects. Refugia were more likely to occur when smoke was moderate 
to dense in the morning, a relationship attributable to reduced in-
coming solar radiation resulting from smoke shading beneath tem-
perature inversions. Smoke density was negatively associated with 
elevation (irrespective of the 1300 m threshold), and the strong in-
fluence of smoke on refugia probability could be considered both a 
topographic and atmospheric effect. Our results corroborate prior 
observations and the findings from the only other study that has 
quantified the influence of smoke on fire effects using presence/
absence methods that differ substantially from ours (Estes et al., 
2017). There is some indication that fire- atmosphere feedbacks that 
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promote refugia persistence may be weakening as the atmospheric 
conditions (e.g., strong subsidence) responsible for persistent inver-
sions in the K- S have become substantially less common over the last 
century (Johnstone & Dawson, 2010).

Multiple assumptions and sources of uncertainty influence our 
capacity to quantify drivers of refugia probability. The 30 m grain 
of Landsat- based vegetation (GNN) and severity (RdNBR) data can-
not detect very small yet ecologically important patches of MCD 
forest and refugia (Blomdahl et al., 2019; Coop et al., 2019), and 
our methods were not designed to account for delayed (>1 year) 
mortality that likely influenced long- term refugia pattern dynamics. 
Additionally, satellite data are unable to reliably detect fire- induced 
change below tree canopies that may have influenced repeat burn-
ing dynamics in refugia (Kolden et al., 2012; Meddens et al., 2016). 
We recognize that our 10% basal area mortality threshold for refu-
gia is somewhat arbitrary— there may be substantial differences in 
the ecological importance and persistence of refugia defined based 
on different thresholds (e.g., truly unburned). Although GNN data 
were not developed for applications in moderate-  and high- severity 
burned landscapes (Bell et al., 2015), we assume that the GNN maps 
imputed from generally unburned inventory plots are appropriate 
in the context of MCD refugia with minimal fire- induced change. 
Future research could leverage additional post- fire field data, in-
cluding observations in refugia, to better understand the structural 
and compositional conditions that promote persistence. Another 
limitation of our study is that we did not account for the effects of 
fires which occurred prior to 1984 when Landsat data acquisition 
began. Pre- Landsat fires almost certainly introduced variability we 
were unable to capture directly in our models, but we believe it is 
unlikely that much of our study area burned at high severity in the 
several decades prior to 1984 because we constrained our analysis 
to mature (>80 years old) conifer- dominated forest.

As far as we know, our integration of satellite smoke imagery 
into fire effects models is the first such effort its kind, but there are 
undoubtedly opportunities to improve on this approach. We did not 
explicitly include wind and atmospheric stability in our models, and 
future work could attempt to distinguish between the effects of in-
versions themselves (stable atmosphere, calm winds) and the effects 
of smoke shading. Smoke plume height (Lyapustin et al., 2020) and 
remote weather station data could be combined with smoke imagery 
to definitively ascribe the effects we report here to thermal inver-
sions. Lastly, future research could evaluate if our results are gener-
alizable to other fire- prone regions with complex terrain and where 
thermal inversions occur.

5  |  CONCLUSION

Refugia are ecologically important components of heterogeneous 
fire severity mosaics. Topographic settings associated with enduring 
fire refugia support the persistence of vegetation communities like 
conifer forests in the K- S that are particularly vulnerable to chang-
ing climate– fire interactions (Berry et al., 2015; Collins et al., 2019). 

Observed and projected increases in both global forest fire activ-
ity (Andela et al., 2017) and reburns in western US forests (Buma 
et al., 2020) highlight the need to better understand the top- down 
and bottom- up controls on refugia occurrence and persistence. We 
found that pattern– process relationships shift in relative importance 
as landscapes pass through successive fire filters, and repeat burning 
appears to amplify the effect of terrain features. If similar dynamics 
operate in other forest communities, topographic templates could 
form the basis of management strategies designed to protect and re-
store the most fire- resistant portions of vulnerable forests in a wide 
variety of ecosystems.
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