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Different approaches make comparing studies of burn severity 
challenging: a review of methods used to link remotely sensed 
data with the Composite Burn Index 
Colton W. MillerA,B,* , Brian J. HarveyA, Van R. KaneA, L. Monika MoskalA and Ernesto AlvaradoA  

ABSTRACT 

The Composite Burn Index (CBI) is commonly linked to remotely sensed data to understand 
spatial and temporal patterns of burn severity. However, a comprehensive understanding of the 
tradeoffs between different methods used to model CBI with remotely sensed data is lacking. To 
help understand the current state of the science, provide a blueprint towards conducting broad- 
scale meta-analyses, and identify key decision points and potential rationale, we conducted a 
review of studies that linked remotely sensed data to continuous estimates of burn severity 
measured with the CBI and related methods. We provide a roadmap of the different methodol-
ogies applied and examine potential rationales used to justify them. Our findings largely reflect 
methods applied in North America – particularly in the western USA – due to the high number of 
studies in that region. We find the use of different methods across studies introduces variations 
that make it difficult to compare outcomes. Additionally, the existing suite of comparative studies 
focuses on one or few of many possible sources of uncertainty. Thus, compounding error and 
propagation throughout the many decisions made during analysis is not well understood. Finally, 
we suggest a broad set of methodological information and key rationales for decision-making that 
could facilitate future reviews.  

Keywords: burn severity, CBI, Composite Burn Index, dNBR, dNDVI, fire severity, GeoCBI, 
landsat imagery, NBR, NDVI, RdNBR, remote sensing, spectral index. 

Introduction 

Estimates of burn severity, here defined as the ecological effects of fire, or fire-caused 
change (Lentile et al. 2006), inform immediate post-fire recovery projects, future fuel 
treatments, and long-term ecosystem analysis (Miller and Thode 2007). In the immediate 
post-fire environment, common priorities are to preserve the soil and maintain the vegeta-
tion community (Fernández-García et al. 2018a). A second key function of severity assess-
ments is to understand how fire effects vary with ecosystem composition and structure. 
Linking pre-fire conditions with potential post-fire outcomes helps managers to design 
better fuel treatments, such as thinning and prescribed fires (Churchill et al. 2013, 2022;  
Larson et al. 2022). Severity estimates can also help to predict long-term consequences to a 
post-fire ecosystem (Macdonald 2007), such as changes to forest succession (Johnstone and 
Chapin 2006). Managers need predictive models of wildland fire effects on vegetation 
communities, wildlife populations, and hydrologic function (Sorbel and Allen 2005), and 
ongoing records of fire effects allow ecologists to assess effects of climate change over time. 

Commonly measured fire effects on the ground include consumption of vegetation, 
destruction of leaf chlorophyll, exposed soil, charred stems, and altered moisture (Epting 
et al. 2005). These ecological impacts lead to spectral, thermal, and structural changes on 
the land surface, which can be captured by remote sensors (Epting et al. 2005; Mallinis 
et al. 2018). Combinations of these post-fire soil and vegetation conditions, including 
those with multiple ecosystem attributes, are used to assess burn severity (Table 1). 
Methods may be quantitative or qualitative; all incorporate a choice of fire-related 
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variables that depend on management and ecological objec-
tives as well as sampling scale (Key and Benson 2006). Post- 
fire site characteristics are typically considered relative to 
the pre-disturbance environment (Miller and Thode 2007), 
so severity is also a subjective measurement that can change 
with the time of observation and information available 
(Lentile et al. 2006). 

The size and variability of wildland fires pose several 
challenges for characterising fire effects on the ground 
(Chen et al. 2011). First, accessing remote locations where 
fires have occurred requires resource-intensive and logisti-
cally challenging fieldwork (Morgan et al. 2014). Second, 
the heterogeneity in burn severity across burned landscape 
requires many plots to represent the range of conditions in 
burned areas (Morgan et al. 2014). Finally, many burned 
areas are poorly represented spatially from field plots alone, 
due to the sheer size of burned areas relative to the size and 
number of field plots that are logistically possible (De Santis 
and Chuvieco 2007). 

Remote sensing is a powerful tool to understand spatial 
patterns across burned landscapes, providing a synoptic 
view from space- or airborne sensors, (Lentile et al. 2006;  
Wulder et al. 2009; Soverel et al. 2010) and allowing obser-
vation of post-fire effects inaccessible from the ground (Key 
and Benson 2006; Lentile et al. 2006; Murphy et al. 2008). 

That said, although remotely sensed data provide extensive 
spatial and temporal coverage that field observations lack 
(Schepers et al. 2014), they must be linked to ‘ground-truth’ 
field data (Morgan et al. 2014). The choice of field data 
depends on the goals of the study; there is no one-size-fits-all 
approach to evaluating severity (Keeley 2009). The range of 
potential research questions and applications of these assess-
ments requires different approaches determined by a com-
bination of management, ecological goals, and field 
sampling designs (Ryan and Noste 1985). 

The Composite Burn Index (CBI) integrates multiple met-
rics across vegetation strata and soil, which, used together 
(as a measure of site burn severity), provide an overall scope 
of fire damage (Key and Benson 2006) (Fig. 1). Individual 
components of the index may also be considered separately, 
depending on post-fire management needs (Key and Benson 
2006; Zhu et al. 2006; Keeley 2009). CBI has been adapted 
in many ways, including general modifications such as the 
geometrically structured CBI (GeoCBI, De Santis and 
Chuvieco 2009), and site-specific modifications such as add-
ing or omitting specific attributes (Epting et al. 2005; Allen 
and Sorbel 2008; Hoy et al. 2008; Schepers et al. 2014;  
Fernández-García et al. 2018b). 

CBI has emerged as a popular measure of field-based 
severity in remote sensing for several reasons. First, the 

Table 1. Ecosystem attributes used to evaluate burn severity.     

Ecosystem 
component 

Ecosystem attributes assessed Studies   

Soil Char and ash cover  Smith et al. (2005) 

Soil and ash colour  Neary (2004) 

Consumption and charring of organic soil profiles  Charron and Greene (2002),  Johnstone and Chapin 
(2006),  Robichaud et al. (2007) 

Volatilisation or transformation of soil components to soluble mineral forms  Turner et al. (1994),  Wang (2002),  Wells et al. (1979) 

Vegetation Percentage of tree mortality  Chappell and Agee (1996) 

Decrease in plant cover  Jain and Graham (2004),  Rogan and Yool (2001) 

Canopy consumption and tree mortality  Choung et al. (2004),  Dillon et al. (2011),  Greene et al. 
(2004),  Isaev et al. (2002),  Miyanishi and Jonson (2002);   
Odion and Hanson (2006) 

Degree of canopy consumption and mortality  Doerr et al. (2006),  Kokaly et al.(2007),  Kushla and 
Ripple (1998),  Patterson and Yool (1998),  Rogan and 
Franklin (2001),  Ryan and Noste (1985) 

Char height  Knapp and Keeley (2006) 

Proportion of bole circumference scorched/charred  

Deep charring  Harvey et al. (2014),  Talucci and Krawchuk (2019) 

Proportion of fine branches remaining on the canopy  Moreno and Oechel (1989) 

Composite Combination of factors such as consumption of organic horizon, degree of 
standing trees, and degree of canopy consumption and mortality  

Key and Benson (2006),  Michalek et al. (2000),  Ryan and 
Noste (1985),  van Wagtendonk et al. (2004) 

Composite Burn Index (CBI) or Geometrically Structured Composite Burn 
Index (GeoCBI)  

De Santis and Chuvieco (2009),  Key and Benson (1999) 

Table adapted from  De Santis and Chuvieco (2009).  
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rapid protocol allows quick deployment and assessment 
over large landscapes (Parks et al. 2019). Second, CBI has 
generally robust relationships with field measures (Saberi 
et al. 2022) and satellite spectral fire severity indices 
(French et al. 2008), providing strong support for its use 
to estimate fire effects across landscapes (Parks et al. 2019). 
Third, for general assessments of severity, the CBI may be 
more complete than other classification systems based on 
single indicators of burn severity (Sikkink 2015). 

In addition to the CBI, several alternative composite 
severity measures have been published in the fire ecology 
literature. The GeoCBI accounts for differences in fractional 
cover of each stratum and changes in leaf area index (LAI) 
for the intermediate and tall tree strata (De Santis and 
Chuvieco 2009). Fractional cover and LAI describe the influ-
ence of vegetation cover on reflectance of different strata 
within a given plot, and from a remote sensing point of 
view, the spectral response of a plot is strongly related to 
the vegetation coverage per stratum (De Santis and 
Chuvieco 2009). Other modified versions of the CBI include 
a Weighted CBI (WCBI) (Cansler and McKenzie 2012) and a 
Burn Severity Index (BSI) (Loboda et al. 2013). The WCBI 
generally uses the original CBI protocol for sampling sever-
ity across strata, but it weights scores by the fraction of 
cover for each stratum. Although the method is similar to 
the GeoCBI in that regard, specific weights are study depen-
dent. The BSI was introduced by Loboda et al. (2013) as a 
less rigorous approach that mimics CBI plots but saves time 
in the field. 

Many field measures of severity were designed to scale 
across broad landscapes using remotely sensed data, based 
on the underlying ecological causes that drive changes in 
spectral reflectance between pre- and post-fire landscapes 
(Supplementary Table S1). The ecosystem attributes char-
acterised by the CBI and related composite severity mea-
sures span the range of change expected to be captured by 
remotely sensed data. Overall, studies that use remotely 
sensed data to link to continuous field measures based on 
composite severity measures follow a similar methodo-
logical framework to each other (Fig. 2). However, a num-
ber of key decisions are made at each step. Differences in 

these decisions result in studies that use many unique ave-
nues, and we have limited understanding on how that may 
affect findings across studies. The range of choices available 
for analysis at each step may, in totality, be considered a 
‘decision menu’ that depends on the research questions and 
preferred methodological approaches of the study author(s). 

To our knowledge, no study has yet summarised the 
methods and important decision points that link remotely 
sensed data to CBI as a continuous measure. However, 
studies such as Stambaugh et al. (2015) demonstrate the 
potential for methodological decisions to strongly influence 
the relationships between remotely sensed data and field 
observations. For example, R2 values for the same set of 
plots ranged from 0.18 to 0.78 depending on whether mod-
els used remotely sensed data from initial versus extended 
assessments, were processed with interpolation or not, and 
whether they used the delta normalised burn ratio (dNBR) 
or relativised dNBR (RdNBR). This example highlights the 
difficulty of comparing model results across studies where 
methodologies may differ. However, the existing body of 
literature linking CBI measures to remotely sensed data 
lacks a comprehensive review of the possible methodo-
logical choices that can be made during analysis. This 
paper sought to conduct a review of the many choices of 
the ‘decision menu’ and identify the limitations imposed by 
the lack of consensus in modelling approaches. 

The goal of this review was to compare empirical meth-
ods used to estimate burn severity measured with CBI both 
in the field and through remote sensing to understand the 
impacts of key analytical decisions and research gaps in the 
existing literature. We did this by exploring:  

1. Where and when have studies been conducted?  
2. How is burn severity measured in the field?  
3. How is burn severity measured from satellites?  
4. How are field observations and remotely sensed data 

modelled together? 

Addressing these key questions from our review of 62 stud-
ies will improve our understanding of the state of the sci-
ence regarding sampling of post-fire environments and the 
ability to map burned landscapes using remotely sensed 
data. Additionally, the aggregation of research results from 
the numerous studies that used a variety of analytical meth-
ods will provide insights into whether findings may be 
generalised across studies or are too study specific to inter-
pret in such a manner. 

Methods 

Review framework 

We developed a procedure to guide our process for conduct-
ing a systematic literature search, identifying relevant 
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Fig. 1. Hierarchical structure of the Composite Burn Index (CBI).  
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articles, and extracting data for analysis. This review 
broadly follows the framework developed by Pullin and 
Stewart (2006) for conducting systematic reviews in conser-
vation and environmental management. Their guidelines for 
conducting systematic reviews are based on evaluating the 
effectiveness of management and policy interventions, but 
we only used their approach to develop a search protocol 
and to identify and review relevant studies to generate a 
database from papers that used remotely sensed data and 
continuous measures of burn severity based on the CBI. 
Therefore, our work does not investigate the efficacy of a 
specific treatment (e.g. mechanical thinning or prescribed 
fire) as the systematic review protocol dictates. Our search 
criteria were based on fire and field measurements and four 
remote sensing technologies (optical, thermal, radar, and 
lidar) (Table 2). For each criterion, a set of keywords was 
developed for the database queries (see next section). 

Database queries 

The CAB Direct (https://www.cabdirect.org), Environmental 
Science Collection (https://proquest.libguides.com/environ 
mentalsciencecollection), and Web of Science (https:// 
www.webofknowledge.com) databases were systematically 
searched for original research that investigated the 

relationships between remotely sensed data and continuous 
measures of burn severity assessed with the CBI or GeoCBI. 
Search terms were combined through Boolean operators so 
that each query contained the keywords for fire, field mea-
surements, and one remote sensing technology. We used the 
resulting expression to search abstracts in each database. 
After combining the results from all three databases, 

Linking �eld observations and remotely sensed data

Model selection/comparison
Comparison across strata
Single vs multi-�re models

Variation by forest/fuel type, disturbance, landscape characteristics etc.

Research questions

Fire data

Location
Date of ignition

Type of �re
Size

Vegetation type

Spatial distribution of
continuous burn severity

measurements

Pre-processing

Calculate spectral
indices

Index values corresponding
to �eld plot locations

Fuel type, forest
type, disturbance
history, landscape

characteristics

Modelling

Field data
Remotely sensed

data
Auxiliary data

Fig. 2. Flow diagram showing framework of methods for study design that relate remotely sensed data to continuous 
measurements of burn severity from the CBI and similar composite severity indices.    

Table 2. Search criteria used during review.    

Criterion Keywords   

Fire Wildfire, burn, fire, severity 

Field measurements Composite burn index, CBI, Geometrically 
structured composite burn index, GeoCBI 

Optical data Landsat, satellite, optical, reflectance, spectral, 
spectral index, normalised burn ratio, relative 
normalised burn ratio, relative burn ratio, 
differenced normalised burn ratio, NBR, dNBR, 
RdNBR, RBR 

Thermal data Thermal, land surface temperature, LST 

Radar data Radar, synthetic aperture radar, SAR, L-band, 
X-band, C-band, backscatter 

Lidar data Lidar, light detection and ranging, laser, altimetry   
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duplicate entries were removed (Supplementary Fig. S1). 
Any studies that we missed would mainly have been studies 
published in a journal outside of our database queries (CAB 
Direct, Environmental Science Collection, Web of Science) or 
not having the keywords in our search. 

Screening and data extraction 

Articles were screened to determine whether each entry met 
the inclusion criteria. Articles were excluded if they (1) did 
not use CBI/GeoCBI measurements, (2) used simulated CBI/ 
GeoCBI or simulated remotely sensed data, (3) did not ana-
lyse CBI/GeoCBI measurements as continuous variables, or 
(4) were not in English. We focused on the use of CBI as a 
continuous variable because it provides a more flexible 
approach than categorical measures that classify measure-
ments into bins such as low, moderate, and high severity. 
Continuous data can be adapted to multiple different eco-
logical phenomena. For example, different studies may use 
various threshold breakpoints for different levels of severity 
depending on the model used and the user’s needs (Boucher 
et al. 2017), or chosen according to the relevant ecological 
effects (Hall et al. 2008; Cansler and McKenzie 2012). 
However, severity values are frequently classified in order 
to compare multiple fires, analyse spatial patterns, or com-
municate with managers regarding prioritisation of response 
(Cansler and McKenzie 2012). Readers may find additional 
insights into the use of categorical observations of severity 
in Cansler and McKenzie (2012). 

We selected all empirical studies published in peer-reviewed 
scientific journals through 2019, excluding published literature 
reviews, dissertations and theses, and government reports. 
All articles matching the review criteria were retained 
regardless of the study’s location or ecosystem type. Four 
additional articles were found through searching the liter-
ature cited of the papers included in our search. The articles 
that met our inclusion criteria were reviewed to extract the 
relevant information, which was entered in a rubric format. 
The data for each paper were captured in individual data-
bases for information at the article level (Supplementary 
Table S2), fire level (Supplementary Table S3), and com-
parison level (Supplementary Table S4). We compiled 62 
studies based on the structured database queries; a list of 
studies included in this review and the number of field 
observations to remotely sensed data comparisons 
extracted for analysis are included in Supplementary 
Information S2. 

Analysis 

To locate fires examined by studies included in this review, 
we used a combination of georeferenced study maps, the 
published manuscripts, provided coordinates, or ancillary 
databases (Sikkink et al. 2013; Picotte et al. 2019; CAL 
FIRE 2020; MTBS 2021). Fires were mapped for cases 

where we could confidently identify the study fire based 
on name, location, size, number of field plots, or other 
identifying characteristics. The spatial mapping of fires 
allowed us to overlay terrestrial ecosystems of the world 
(Olson and Dinerstein 2002) and identify which ecosystems 
may be more or less understood. For fire size, information 
was found either in the study itself or through ancillary 
databases. 

Although our focus was on the use of burn severity as a 
continuous variable, many included studies that used con-
tinuous data in their analysis also reported thresholds used 
for classifying burn severity. In such cases, we recorded the 
distribution of field plots classified by unburned, low, mod-
erate, or high burn severity. These data were assessed in two 
ways: (1) by summing the number of plots per severity 
category across the studies; and (2) calculating the propor-
tion of plots placed into different burn severity classes. By 
assessing classified data, we were able to present some 
results on the variability of the threshold values used to 
bin continuous observations. Additionally, because many 
studies did not show a distribution of continuous plot sever-
ity scores, we used this subset of studies that provided 
classified distributions to gain some understanding of how 
plot severity varied across studies. 

To assess the timing of field campaigns, we used the date 
of ignition for the fire and date of field sampling. The 
smallest temporal grain we could identify for cases was to 
the nearest month. Results were limited to studies that 
reported both the timing of fires (or studied fires that 
where ignition date was available elsewhere) and the timing 
of field campaigns. 

In some cases, we contacted authors to ask for informa-
tion not provided in published manuscripts such as field plot 
size and timing, index value extraction methods, etc. All 
summary statistics and figures – with the exception of the 
study map – were conducted using the R programming 
language (R Core Team 2017). Where presented, standard 
deviations were calculated using the population standard 
deviation equation (Zar 1999). Due to missing information, 
some summary statistics and analyses are based only on 
cases where data were available. The number of studies, 
fires, or comparisons for each analysis are presented in 
each relevant table or figure caption or in the figure itself. 

Results 

Study information 

Studies using CBI, interannual trends, and main 
journals 

The systematic search resulted in 62 papers published in 
2004–2019. All used field measures of burn severity based 
on the CBI protocol (CBI, GeoCBI, WCBI, BSI) as a continu-
ous measure to integrate with remotely sensed data. One to 
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nine papers were published each year (μ = 4.1, σ = 2.2; 
Supplementary Fig. S2a), with no significant linear trend 
over time (t = 1.422, P = 0.179). The 62 articles were in 17 
scientific journals; half (31) were in either Remote Sensing of 
Environment or International Journal of Wildland Fire 
(Supplementary Fig. S2b). 

Fire data 

Location of fires 
For the 62 studies, 352 of 401 fires were uniquely identi-

fied and geospatially located (Fig. 3a). Study fires were most 
commonly located in temperate conifer forests (185 fires). 
Less commonly studied ecosystems included boreal forests/ 
taiga (51), temperate broadleaf and mixed forests (47), 
deserts and xeric shrublands (38), mediterranean forests, 
woodlands, and scrubs (19), and tundra (9). One fire was 
studied in each of the following: flooded grasslands and 
savannas, temperate grasslands, savannas and shrublands; 
and tropical and subtropical grasslands, savannas and shrub-
lands. Fires sampled were mostly in the Northern 
Hemisphere, especially in the United States (283) and 
Canada (22). Fires were also sampled in China (17), Spain 
(15), Russia (5), Australia (2), Greece (2), and Belgium, 
Portugal, and Burkina Faso (1 each). Two fires from Miller 
et al. (2009) and 36 from Parks et al. (2019) lacked 

sufficient information to identify the locations of fires. In 
the United States, fires were mainly in temperate conifer 
forests, deserts and xeric shrublands in the West. 

Number of fires per study 
Each study reported 1–263 fires (μ = 9.9 ± 4.9; η = 3); 

23 investigated a single fire. Of the 62 studies reviewed, 
only 53 explicitly stated the number of fires in the analysis. 
The other nine studies either reported multiple or several 
fires (7), an unknown number (1), or did not specify (1). 

Timing and type of fires 
The earliest identified fire occurred in 1994 and the latest 

in 2017 (Fig. 3b); 401 unique fires with known ignition 
dates were identified. Most fires (194/total) were either 
explicitly labelled as wildfires or classified as such by 
Monitoring Trends in Burn Severity, a program that maps 
burn severity and perimeters for fires over 1000 acres in the 
western USA, and 500 acres in the eastern USA (Eidenshink 
et al. 2007). Others were prescribed fires (74), wildland use 
fires (28), and a combination of prescribed and wildland 
fires (1). Of the remaining 104 fires, four specified only that 
they were caused by lightning; the rest (96) did not expli-
citly identify fire type, but most were likely also wild-
land fires. 

(a) Fire locations

(b) Fire ignition
years

(c) Fire sizes N Scale: 1:125 000 000

Temperate conifer forests (185) Tundra (9)

Flooded grasslands and savannas (1)
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Fig. 3. (a) Location of fires (black dots) and ecosystem type (N = 352 fires). The number of fires in each ecosystem type are shown 
in parentheses in the key. (b) Years of fire ignition (N = 401 fires). (c) Fire sizes (log10 hectares) (N = 328 fires). Note: 401 fires were 
identified in the studies reviewed, but some lacked information on size or location.    
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Fire sizes 
For the 328 fires where information was available, the 

range of fire sizes was 28–730 855 ha (μ = 18 005, 
σ = 58 067; Fig. 3c); the majority (65%) were <5000 ha. 
The sizes of 74 fires were not explicitly given or found in 
supplementary searches; sometimes this information was 
not stated (44), was provided as a sum across several fires 
(3), or the study reported only the regional burn area and 
not the specific fire studied (1). 

Field data 

Types of field data used and variation by year 
van Wagtendonk et al. (2004) was the first study to use 

CBI as a continuous measure of burn severity, following its 
introduction at a Joint Fire Science Conference and Workshop 
by Key and Benson (1999) (Fig. 4a). Studies using the GeoCBI 
as a continuous variable to link to remotely sensed data were 
first published in 2009 (De Santis and Chuvieco 2009). Most 
of the studies reviewed relied on these protocols, but four 
investigated modifications such as weighted versions 
(WCBI) (Soverel et al. 2010; Cansler and McKenzie 2012;  
Mallinis et al. 2018) or BSI (Loboda et al. 2013) (Table 3). 
The GeoCBI, WCBI, and BSI emerged as alternate 
approaches to field sampling, but CBI remained the most 
common composite severity measure throughout this 
review. 

Most (57) studies used a single method (e.g. CBI, GeoCBI, 
or WCBI) to measure burn severity on the ground; CBI on its 
own comprised 45 of the 62 papers reviewed in this study, 
and GeoCBI alone was used in 12 studies (Fig. 4b). Only 
three papers incorporated multiple methods of measuring 
severity on the same fire and were compared whether dif-
ferent field methods resulted in better or worse relationships 
with remotely sensed data (De Santis and Chuvieco 2009;  
Cansler and McKenzie 2012; Mallinis et al. 2018). A fourth 

study (Soverel et al. 2010) collected two types of field data 
but did not compare their performance in the analysis. 

Modifications to CBI protocols 
The established CBI protocol was sometimes modified for 

individual study purposes (Table 4). We identified five ways 
the method was adapted, including omitting or adding eco-
system components, modifying the strata height thresholds 
relative to site-specific vegetation characteristics, modifying 
strata weights when calculating overall plot severity, and 
implementing altered protocols that streamline measurements. 

Inclusion of unburned field plots 
Studies varied in whether they measured unburned plots 

in addition to burned plots, and if they did, varied in how 
they included them in their analyses. Including unburned 
plots would extend the range of the remote sensing mea-
surements to include values for both vegetation that did not 
burn and vegetation that did burn. Most commonly, the 
reviewed studies did not specify whether they measured 
unburned plots in addition to burned plots (24 studies) 
(Fig. 5a). However, nearly as many studies did include 
unburned field plots on the sampled fires (21). 
Additionally, several studies that sampled multiple fires 
included at least one fire with unburned field plots and 
one without (3). Two studies collected unburned field 
plots but excluded them from some analyses; of those, one 
study excluded the unburned plots altogether, and one 
excluded them from the continuous severity analysis but 
not the classification analysis. When unburned field plots 
were not measured on the ground, some studies incorpo-
rated ‘pseudo-unburned’ field plots (5), where areas outside 
the fire perimeter were assumed to have a CBI (or other burn 
severity measurement) score of ‘0’ or unburned. Otherwise, 
unburned field plots were not sampled at all, either on the 
ground or through remotely sensed data (6). 
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Distribution by severity 
The distribution of field plots classified by burn severity 

(unburned, low, moderate, high) was provided in 21 studies 
(a combined 2968 plots). (1) The counts of plots were 
summed by severity category across studies. In this case, 
high severity was the most common classification (Fig. 5b); 
of all field data measured across all studies, there were more 
high severity plots than any other category. (2) Data were 
assessed by calculating the proportion of plots placed into 
different burn severity classes by each study. Here, the highest 
proportion of plots were in moderate severity areas, followed 
by high severity, then low severity (Fig. 5c). This means that 
each study, on average, measured more moderate-severity 
areas. However, the specific thresholds considered for each 
severity category varied by study (Table 5). 

Number of plots per fire and relationship to 
fire size 

For the 357 fires that had recorded plot counts, the 
average number of plots used per fire was 37.0 (σ = 53.4); 

44 fires had no recorded plot counts (Fig. 6a). Both fire 
size and plot count information were available for 320 
fires. The number of plots used per fire increased with fire 
size, but, as fires get more massive, the plots used increased 
more slowly (Fig. 6b, log-log slope estimate = 0.2246, 
P < 0.001, R2 = 0.10). 

Size and timing of field plots 
For the 159 fires where both the date of fire occurrence 

and timing of field plot measurements were reported, field 
campaigns occurred 1–40 months after the fire began, with 
an average delay of 10.5 (σ = 6.0) months (Fig. 7a). Plot 
size was reported for 137 fires (range = 13–6362 m2, 
μ = 1331.0 m2, σ = 1734.5; (Fig. 7b). For these fires, plots 
were mostly circular (105 fires) and sometimes square 
(32 fires). 

Spatial distribution of field plots 
Most studies located field plots using a stratified 

approach based on homogenous areas identified by dNBR, 

Table 3. Types of field data used in studies.     

Field measure Description Studies   

Composite Burn Index (CBI) Continuous measure of severity using 22 ecosystem attributes averaged across 
five strata  

Key and Benson (2006) 

Geometrically Structured CBI 
(GeoCBI) 

Original CBI protocol, but weights by fractional cover of each stratum and 
incorporates changes in leaf area index (LAI) for intermediate and tall tree strata  

De Santis and Chuvieco (2009) 

Weighted CBI (WCBI) Original CBI protocol, but weights scores by fractional cover for each stratum  Cansler and McKenzie (2012) 

Original CBI protocol, but weights each stratum by its estimated percent 
coverage within plot, with double weight assigned to overstorey trees  

Soverel et al. (2010) 

Original CBI protocol, but weights each stratum by its estimated percent 
coverage within plot, with additional 50% weight assigned to overstorey trees  

Mallinis et al. (2018) 

Burn Severity Index (BSI) Rates field plots according to a 4-point scale (unburned, low, moderate, severe); 
rates the fractional assessment of burn severity within plots; converts the score 
for each to a single value by weighting the 4-point scale by the fraction of the plot 
affected by each severity class  

Loboda et al. (2013)   

Table 4. Modifications of the Composite Burn Index (CBI) protocol.     

Modification Description Studies   

Omitted components Omit components not present  Allen and Sorbel (2008),  Epting et al. (2005),  Fernández- 
García et al. (2018b) 

Omit components requiring knowledge of pre-fire environment 

Omit components relevant to extended assessments  Fernández-García et al. (2018b) 

Added components Add components tailored to specific ecosystem  Hoy et al. (2008),  Schepers et al. (2014) 

Modified height strata Modify strata height thresholds to match ecosystem structure  Hoy et al. (2008),  Stambaugh et al. (2015),  Whitman 
et al. (2018) 

Modified strata weights Used different weights for individual strata when calculating overall 
plot severity scores  

Cansler and McKenzie (2012),  Mallinis et al. (2018),   
Soverel et al. (2010) 

Altered protocol Streamline CBI field sampling, with continuous measures (e.g.%) 
where possible  

Tanase et al. (2015a,  2015b) 

‘CBI-like’ measurements  Tanase et al. (2015a,  2015b)   
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as suggested in the FIREMON Landscape Assessment proto-
col (Key and Benson 2006). However, two studies (Schepers 
et al. 2014; Warner et al. 2017) located plots in random 
locations. Schepers et al. (2014) used a split approach, with 
field measurements in both homogenous and random loca-
tions; the randomly located plots were more heterogeneous 
in both burn severity and vegetation type. Warner et al. 
(2017) used a random approach combined with relatively 
many samples, which enabled a simpler and more direct 
estimate of the accuracy of their remotely sensed sever-
ity map. 

Remotely sensed data 

Remote sensor technologies 
The most used sensors were from the Landsat program 

(Supplementary Table S6). Studies using the Landsat 4–5 
(Thematic Mapper; TM) and Landsat 7 (Enhanced Thematic 
Mapper; ETM+) satellites were the most numerous 

(60 studies combined), followed by Landsat 8 Operational 
Land Imager (OLI; 8) and unspecified Landsat sensors (6). 
Most studies relied on sensors that acquired multispectral 
imagery with wavelengths encompassing the visible, near 
infrared, shortwave infrared, and thermal regions of the 
electromagnetic spectrum (56). Other sensors did not sam-
ple at higher wavelengths and thus did not collect shortwave 
infrared or thermal data. Two studies used Synthetic- 
aperture radar (SAR). Sensors were mounted on platforms 
ranging from satellites to airplanes to uncrewed aerial vehi-
cles (UAVs). 

Resolution of remotely sensed data 
Because the most used sensors were from the Landsat 

program, most studies used remotely sensed data with a 
30 m spatial resolution. The coarsest spatial resolution 
(1000 m) was associated with the Moderate Resoltion 
Imaging Spectroradiometer (MODIS) on NASA Terra and 
Aquas satellites (Holden et al. 2010; Kolden and Rogan 
2013; Hultquist et al. 2014; Zheng et al. 2016), and the 
finest (0.02 m) was from imagery collected by a consumer- 
grade RGB camera (Fraser et al. 2017). 

Number of sensors used and inclusion of single or 
bitemporal data 

Most studies used a single sensor (49) or included two 
sensors (11) (Supplementary Fig. S3a). Two studies included 
three or four sensors. For our analysis, all Landsat sensors 
(TM, ETM+, OLI) were combined, so studies using more 
than one sensor do not reflect those that used different 
Landsat satellites for pre/post fire imagery. We identified 
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Table 5. Composite Burn Index (CBI) minimum scores for low-, 
moderate-, and high-severity classes across studies that provided 
categorical severity thresholds (N = 17 studies).      

Statistic Low Moderate High   

Average (μ) 0.18 1.23 2.18 

Standard deviation (σ) 0.28 0.16 0.13 

Minimum 0.00 1.00 1.85 

Maximum 1.04 1.76 2.25 

CBI ratings range from 0 (unburned/unchanged) to 3 (high severity). See 
individual study thresholds in Supplementary Table S5.  
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five ways that studies incorporated two or more sensors in 
their analysis (Table 6). All studies that used more than one 
sensor included data from at least one of the Landsat satel-
lites. All but one study that used multiple sensors also 
collected optical and sometimes also thermal data. The 
exception was Tanase et al. (2015a), who included both 
optical and SAR data. 

Regarding single and bitemporal remotely sensed data, 
studies mostly included bitemporal imagery (38) 
(Supplementary Fig. S3b). Sixteen studies that included 
bitemporal data also analysed relationships using single- 
date indices. The least common strategy was to include 
only single-date indices (8); three of these were based on 
Multiple Endmember Spectral Mixture Analysis. 

Atmospheric corrections (absolute radiometric 
corrections) 

The studies reviewed used several atmospheric correction 
methods for optical data; most common were top of atmo-
sphere (or at-sensor reflectance; 23 studies) or surface 

reflectance derived by various methods (28) 
(Supplementary Fig. S4). Eight studies did not specify the 
level of radiometric correction. Of those, two stated only 
that radiometric corrections were used, and three stated 
only that atmospheric corrections were used. Of the studies 
using surface reflectance, the most commonly stated method 
was Dark Object Subtraction (DOS; 9), followed by the 
cosine of the solar zenith angle correction (COST; 4) 
(Chavez 1996). Other studies used unspecified surface 
reflectance (15) or used different methods depending on 
which band was assessed (1). One study quantified the effect 
of using four atmospheric correction methods (Fang and 
Yang 2014). 

Relative radiometric normalisation 
Some bi-temporal datasets used pseudo-invariant fea-

tures (PIFs) to conduct radiometric normalisation or assess 
its necessity (10 studies). Most commonly, studies that con-
ducted relative radiometric normalisation used PIFs to 
regress the pre-fire values against the post-fire values (4), 
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but normalisation of post-fire reflectance to the pre-fire 
image also occurred (1). The remaining studies that identi-
fied PIFs found that no further relative radiometric normal-
isation was required (5). Except for one case, there was no 
mention of how PIFs were located; that particular study 
specified that its method used the iteratively re-weighted 
multivariate alteration detection (IR-MAD) algorithm to 
select PIFs, which were then used to normalise the target 
images on a band-wise basis. The other studies that did not 
identify PIFs stated that no scene-to-scene radiometric nor-
malisation was applied (2) or used pre-processed imagery 
prepared by the Monitoring Trends in Burn Severity (MTBS), 
Burned Area Emergency Response (BAER), or Rapid 
Assessment of Vegetation Condition after Wildfire (RAVG) 
programs (5). The remaining 43 studies did not evaluate the 
need for relative radiometric normalisation. 

Georeferencing/co-registration 
Georeferencing/co-registration was used in some bitem-

poral datasets to reduce geometric error between image pairs 
(Table 7). Studies usually did not specify any type of geor-
eferencing or co-registration (27 studies). For the studies that 
explicitly stated that they did use co-registration, the most 
common method was to co-register data between image pairs 
(10). For methods used in the remaining studies, see Table 7. 

Most studies that undertook co-registration used ground 
control points to tie images together (specifying 30, 34, 40, 
80, or enough control points to achieve specified root-mean- 
square error [RMSE; 5 studies]). One study used the Imagine 
Autosync feature in ERDAS Imagine 2015 software 
(Hexagon Geospatial Inc., Norcross, GA, USA), which 
matches images using automatically generated tie-points. 
Studies that reported the accuracy of co-registration 
(6) did so using either pixel accuracy or RMSE. Pixel accu-
racy was reported within 0.5 pixels (1) or 1 pixel (1); RMSE 
was reported using pixel units (4) at levels of 0.014, 0.16, 
0.5 or lower, and 0.5. Transformations used included first- 
order (2), second-order (3), and third-order (1) polynomials. 
Resampling methods reported were nearest neighbour 
(2) and bilinear (1). 

Types of indices 
Most indices used in the studies reviewed were based on the 

optical region of the electromagnetic spectrum, which incor-
porates portions of the visible, infrared, and shortwave infra-
red regions (Fig. 8a). Less common were mixed indices, 
combining spectral regions with thermal indices, followed by 
thermal- and radar-based indices. Regarding temporal form, 
indices were mostly single-date or bitemporal using an abso-
lute (pre-post) difference (Fig. 8b). Less common were relati-
vised bitemporal indices (e.g. RdNBR, RBR). Finally, the least 
used types of temporal indices were bitemporal ratio indices 
(pre/post) (2 indices: Radar Burn Ratio, image ratioing) and 
combination bitemporal absolute difference and single-date 
index (1 index: dNBR-Enhanced Vegetation Index [EVI]). 

NBR and Normalised Difference Vegetation Index (NDVI) 
were among the most studied spectral indices. The top three 
indices were based on NBR: dNBR (50 studies), followed by 
RdNBR (25), and NBR (19) (Fig. 8c). The next most common 
indices were the differenced NDVI (dNDVI, 18 studies) and 
NDVI (12). Although 105 indices were related to CBI, most 

Table 7. Specified methods for georeferencing/co-registration 
used by studies.    

Method Number of 
studies   

Did not specify use of co-registration  27 

Co-registered data between image pairs  10 

Co-registering image pairs to a high-resolution 
orthophoto  

3 

No co-registration was performed  3 

Data misalignment was inspected visually or 
quantitatively, and co-registration was not needed  

3 

Use data that is not co-registered (MTBS)  3 

Both co-registration between image pairs and co- 
registration to a high-resolution orthophoto 
(differed by sensor)  

1 

Unspecified geometric normalisation  1   

Table 6. Five ways that studies incorporated two or more sensors into their analysis.    

Ways that studies incorporated two or more sensors Studies   

Used optical sensors interchangeably with those from the 
Landsat program  

Karau and Keane (2010),  De Santis and Chuvieco (2009) 

Compared model performance between Landsat and at least one 
other sensor  

Fraser et al. (2017),  García-Llamas et al. (2019),  Holden et al. (2010),  Mallinis et al. 
(2018), van Wagtendonk et al. (2004),  Veraverbeke et al. (2012),  Wu et al. (2015) 

Compared model performance between Landsat and at least one 
other sensor, along with their synergy  

Chen et al. (2015),  Tanase et al. (2015a) 

Down-sampled low-resolution imagery to use in conjunction 
with Landsat data  

Kolden and Rogan (2013) 

Incorporated MODIS data as auxiliary information to estimate 
LST from Landsat imagery  

Zheng et al. (2016)   
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appeared in only one or two studies (76 indices; see 
Supplementary Table S6). 

Number of indices per study and combinations of 
temporal form 

The mean number of indices used in each study was 5.0 
(σ = 5.7), with up to 26 indices in a single study (Fig. 9a). 
Absolute difference pre/post-fire indices were the most com-
mon (50 studies), followed by relativised bi-temporal 

indices (26), single-date post-fire indices (23), and ratio 
indices (3). Most commonly, studies included only absolute 
indices (21, Fig. 9b). Many studies had both absolute and 
relativised indices (13); absolute, relativised, and single- 
date indices (10); or just single-date indices (8). Less com-
monly, studies reported a combination of single and abso-
lute indices (4) or only relativised indices (3). Least used 
were absolute, single-date, and ratio indices; absolute and 
ratio indices; or just ratio indices (1 study each). 
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C. W. Miller et al.                                                                                                             International Journal of Wildland Fire 

L 



dNBR offset 
Most of the studies reviewed (54 of 62) included dNBR as 

a spectral index. However, the majority of those studies (34) 
did not include a dNBR offset value (Fig. 10). We found that 
eight studies did not specify whether an offset value was 
included or not. Six studies did explicitly state that an offset 
was included. Additionally, two studies provided analyses 
both with and without an offset, and two other studies 
tested whether including an offset value improved the rela-
tionship with field data but ultimately excluded it from their 
analyses. Finally, two studies used MTBS/BAER data, which 
include an offset value for RdNBR indices, but not in the 
calculation of dNBR. 

Pixel value extraction methods 
Many studies (22) did not specify how the value of indices 

for field plots was determined (Table 8). The studies that did 
specify their method most commonly extracted the value of the 
pixel over plot centre (14), used a 3 × 3 focal mean window 
centred on the plot (12), or bilinear smoothing (7). For smooth-
ing types used in the remaining 9 studies, see Table 8. 

Only two studies quantitatively compared different 
smoothing methods; one compared bilinear with no 

smoothing (Stambaugh et al. 2015), and one used four 
methods for Quickbird imagery in their comparison with 
ASTER and Landsat data (Holden et al. 2010). 

Linking models 

Model(s) used and field data as predictor or 
response 

Fifteen classes of models were used in analyses (Table 9); 
the most common was linear regression (36 comparisons), 
followed by quadratic regression (17), and exponential mod-
els (9). For the models used in the remaining 30 compari-
sons, see Table 9. 

Field data were much more commonly used as a predictor 
variable (75 comparisons) than as a response variable (19). 
This pattern held across almost all general model types. 
However, for three models, field data were used solely as 
a response variable: the natural logarithm model, the expo-
nential models, and the sigmoidal model. For cubic and 
unspecified non-linear models, the same number of compar-
isons used field data as a predictor variable and a response 
variable. Eight analyses just reported correlation statistics 
between the two observation methods. 

Model performance metrics 
Many methods were used to assess or quantify the per-

formance of models that related remotely sensed data to 
field plots (Table 10). The most common metric was R2 

(46 studies), followed by RMSE (17), R2
adj (14), p (13), 

and r (13). Most studies used a single evaluation metric 
(24) or two metrics (27, Supplementary Fig. S5). Eleven 
studies assessed three or four metrics. 

Field plot measurements by strata 
The CBI rating encompasses five vegetation strata, com-

monly separated into understorey (A–C) and overstorey 
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(D, E) components (Fig. 1). Of the 62 studies reviewed, 14 
modelled CBI across strata. Three methods investigated 
whether relationships between field observations and 
remotely sensed data varied by strata (Table 11). The most 
common method separately modelled the understorey com-
ponents (A–C), overstorey components (C, D), and overall 
severity (5 studies). Studies also modelled each individual 
stratum separately (4), or modelled the soil or substrate 
component (A) and surface or vegetation components 
(B–E), as well as the composite or overall severity (3 stud-
ies). Only two studies modelled just the overstorey compo-
nents (D, E) and overall severity. 

Single-fire vs multi-fire models 
Most studies analysed single-fire local models (33); i.e. 

relationships between field plots and remotely sensed data 
were fire-specific (Supplementary Fig. S6). Other studies 
investigated regional models (19), combined field plots 
across multiple fires, or evaluated both local and regional 
models (10). 

Discussion 

This review highlights the many ways that continuous mea-
sures of severity, based on the CBI, have been linked to 
remotely sensed data, and outlines the range of methods 
and decisions in the process. Five main topics were investi-
gated: (1) study information; (2) fire data; (3) field data; 
(4) remotely sensed data; and (5) linking models. Overall, 

we found wide variability in the methodological decisions 
and analytical tools used by the included studies. This find-
ing raises the challenge of knowing whether differences 
among study results are driven by site-specific ecological 
and fire differences or were affected by differences in the 
methodological approaches. One outcome of this study was 
to provide flowcharts that highlight decisions that can be 
made during field data collection, remotely sensed data 
collection, and modelling phases (Figs 11–13). These flow-
charts may facilitate more comparative studies that assess 
the robustness of the workflow to differences in methodo-
logical choices and highlight potential future research direc-
tions. Combined with the breakdown of methods and 
number of studies that have investigated each decision, 
future studies may focus on specific areas of the analytical 
framework that are not well represented (such as the effec-
tiveness of thermal, radar, and lidar data compared with 
spectral imagery), or they may seek to conduct more exten-
sive meta-analyses comparing multiple methodological 
choices. Additionally, we found several key research gaps 
that warrant future investigation. Finally, we encourage 
future studies to provide explicit description and justifica-
tion behind their methodological approaches to make com-
parisons among findings in separate studies more possible. 

Comparative investigations 

There is no one consensus for the best way to connect field 
observations to remotely sensed data, and uncertainties 
exist at every decision point. First of all, there is no univer-
sal, one-size-fits-all approach to evaluating burn severity 

Table 8. Pixel value extraction methods by citation including parameters and frequency of use in studies (N = 62 studies).      

Pixel value extraction method Description Parameters Frequency   

None specified N/A   22 

None Pixel value overlaying plot centre   14 

Focal mean Mean is calculated for the pixels encountered in a 
neighbourhood around a cell 

3 × 3  12 

6 × 6  1 

12 × 12  1 

Bilinear Mean is calculated for the values of the four nearest 
pixels to plot centre weighted by their distance to 
the point   

7 

Mean values of sample points within plot Mean of pixel values overlaying sample points 
within plot 

5  2 

175  1 

900  1 

Area-weighted Weighted plot averaging; weights assigned based on 
each pixel’s percentage of area within a plot   

3 

Mean values of pixels within distance of plot Mean of pixel values for cells falling within specified 
distance of plot 

Within 15 m of plot centre 
(weighting centre double)  

1  

4 pixels closest to plot centre  2 

Object-based Mean of pixel values within defined objects   1   
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(Cocke et al. 2005; Keeley 2009). Although some studies 
suggest more utility, and that tree-level measurements that 
directly assess ecological effects may be preferable to a 
composite index that aggregates semi-quantitative estimates 
of change across a plot (Morgan et al. 2014; Furniss et al. 
2020), the choice of assessment should be determined by 
management, ecological purposes, and field sampling 
designs (Ryan and Noste 1985). We identified, where avail-
able, analyses that compared important decision points in 

linking field observations of CBI as a continuous variable to 
remotely sensed data. The numerous analytical decisions 
and paths that studies applied prevented strong generalisa-
tions from being made, especially considering that relatively 
few studies compared multiple approaches at key decision 
points in the workflow. Of those that did, many returned 
mixed results. Consequentially, the choice of how burn 
severity is measured and modelled influences study 
outcomes. 

Table 9. Models used in analysis and (a) whether field data were a predictor or (b) response variable, (c) analysis was based only on 
correlation, or (d) not specified (N = 108 comparisons).        

Model type Model form (a) Predictor (b) Response (c) Correlation (d) Not 
specified   

Pearson =X Y
X Y

,
cov( , )

X Y

6  

Spearman r = X Ys rg , rg where 

raw scores Xi, Yi are 
converted to ranks 
rgXi, rgYi   

2  

Linear y a bx= + 29  7  1 

Quadratic y ax bx c= + +2 16  1   

Cubic y ax bx cx d= + + +3 2 1  1   

Natural logarithm y ax b= ln( + ) 2    

y a x b= ln( ) + 1    

( )y a= × ln bx c
d
+ 1   

Exponential y a bx= + c 1    

y a b bx= + × exp( ) 4   

y ax= b 1    

y ab= x 1    

y ae= bx 1   

y ax= 1 exp( ) 1    

Saturated growth y x ax b= ( + ) 1 3    

y x a x b= ( + ) 1 1    

Gompertz y a b a
c

d x b a

= + ( )
exp[ exp[ × exp(1) ×
( )/(( ) × log(10)) + 1]]

1    

Sigmoidal y a b c x= (ln( / ) 1) 1   

Non-linear Not specified  2  2   

Multiple linear regression Study-dependent  4  1   

GAM Study-dependent  1    

Regression tree Study-dependent  1    

SVR Study-dependent  2    

RF Study-dependent  2    

GPR Study-dependent  1    

Total   75  19 8 1   
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One such example relates to the comparison of different 
composite severity measures (CBI, GeoCBI, and WCBI). 
Three studies (De Santis and Chuvieco 2009; Cansler and 
McKenzie 2012; Mallinis et al. 2018) compared multiple 
ground measures of severity and found that no one method 
seemed to result in the greatest correspondence between 
field- and satellite-based estimates of burn severity across 
different regions. For both Cansler and McKenzie (2012) and  
Mallinis et al. (2018), who both included analysis of CBI, 
GeoCBI, and WCBI, the best performing field measurement 
depended on which spectral index (and in the case of  
Mallinis et al. (2018), which sensor) was used. De Santis 
and Chuvieco (2009) compared CBI and GeoCBI, and found 
that GeoCBI peformed best for two of the three fires assessed, 
and CBI performed best on the third. Thus, although metrics 
of fractional cover, leaf area index, or other weighting 
approaches did in some cases improve burn severity models, 
the mixed results failed to provide a convincing answer as to 
which composite severity measure is best. 

Another example of the lack of consensus about how to 
sample fires relates to the inclusion of unburned and low- 
severity field plots in the field sample set, which provides an 
anchor at the low range of CBI for assessing relationships 
with remotely sensed data. The bias that we identified of 
field plots tending towards moderate- and high-severity 
areas likely occurs for two reasons: (1) attempts to overcome 
the saturation of remotely sensed indices at high severities 
(van Wagtendonk et al. 2004; De Santis et al. 2010;  
Veraverbeke et al. 2012; Parks et al. 2014); and (2) the 
importance of these areas to management (Robichaud 
2000; Miller and Thode 2007; French et al. 2008; Cansler 
and McKenzie 2012; Fernández-García et al. 2018b). 
We found substantial variation in the thresholds used in 
classification, but it was clear that the underrepresentation 
of lower range of severities occurred despite that varia-
tion. The fact that only one of the two studies that 
excluded unburned plots from their analysis (Murphy 
et al. 2008) provided a rationale (the unburned sites 

Table 10. Model performance metrics and their frequency of occurrence.     

Metric Description Frequency   

R2 Coefficient of determination: proportion of the variance in the dependent variable that is predictable from the independent 
variable(s)  

46 

RMSE Root-mean-square error: measure of the differences between values (sample or population values) predicted by a model or an 
estimator and the values observed  

17 

R2
adj Adjusted R2: accounts for the phenomenon of the R2 automatically and spuriously increasing when extra explanatory variables 

are added to the model  
14 

P Probability value: probability of obtaining test results at least as extreme as the results actually observed, assuming that the null 
hypothesis is correct  

13 

r Pearson correlation coefficient: linear correlation between two variables X and Y  13  

Actual versus fitted graph: visualisation of actual versus predicted values  9 

AIC Akaike information criterion: estimator of out-of-sample prediction error and thereby relative quality of statistical models for a 
given set of data  

3 

rs Spearman’s rank correlation coefficient: nonparametric measure of rank correlation (statistical dependence between the 
rankings of two variables)  

3 

BIC Bayesian information criterion: criterion for model selection among a finite set of models; the model with the lowest BIC is 
preferred. It is based, in part, on the likelihood function and it is closely related to the Akaike information criterion (AIC).  

1 

MAE Mean absolute error: measure of errors between paired observations expressing the same phenomenon  1 

RSE Residual standard error: standard deviation of its sampling distribution or an estimate of that standard deviation  1   

Table 11. Different ways of partitioning ecosystem strata for modelling.    

Methods for modelling strata Studies   

Model each stratum separately  Allen and Sorbel (2008),  Chen et al. (2015),  Meng and 
Meentemeyer (2011),  Stambaugh et al. (2015) 

Combine individual strata to model the understorey (substratum; herbs, low shrubs, and 
trees <1 m; tall shrubs and trees 1–5 m), overstorey (intermediate trees 5–20 m; tall trees 
>20 m), and overall severity separately  

Chen et al. (2011),  Hoy et al. (2008),  Tanase et al. (2011),   
Warner et al. (2017),  Wu et al. (2015) 

Model only overstorey and overall severity  Tanase et al. (2015a,  2015b) 

Model the soil (or substrate), surface (or vegetation), and overall or composite measures 
of severity separately  

Fernández-García et al. (2018b),  García-Llamas et al. (2019),   
Kolden and Rogan (2009)   
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Type of plot CBI, GeoCBI, WCBI

Distribution by severity Inclusion of unburned
areas

Number

Size

Timing

Location: homogenous areas vs
random sampling

Change height thresholds based
on ecosystem

Inclusion/exclusion of criteria
based on ecosystem or

assessment timingCriteria
modi�cations

Sampling
characteristics

and
spatiotemporal

distribution

Spatial distribution of
continuous burn severity

measurements

Field data

Fig. 11. Analytical decisions to be made during field data sampling.    

Remotely sensed
data

Pre-processing

Remote sensor
technologies

Platforms
Satellites, aircrafts, UAVs

Single sensor or multiple
sensors

Spatial and
spectral resolution

Single or multi temporal data

Absolute

Relative

Georeferencing

Co-registration

Single or bitemporal

dNBR offset

Number of indices and
combinations of temporal form

Sensors
Optical, thermal, radar, lidar

Radiometric
corrections

Geometric corrections

Types of indices

Index value extraction
methods

Data acquisition

Calculate spectral
indices

Extract index value
over !eld plots

Index values corresponding
to !eld plot locations

Fig. 12. Analytical decisions to be made during remotely sensed data acquisition and processing.    
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(CBI = 0) disproportionately influenced the linear fit to 
produce remaining non-liner residual structure) highlights 
the need for more comparative analyses in this realm. 

These examples highlight the uncertainty that often 
remains following quantitative assessments of methodo-
logical approaches. This is not unique to methods based 
on composite severity indices, however – Furniss et al. 
(2020) found that estimates of tree-level metrics such as 
mortality of stems and basal area could vary widely for a 
single spectral index value. Such uncertainties are unsatisfy-
ing and provide reason for caution when applying method-
ologies developed in one context, for example based on a 
single fire or ecosystem type, outside the scope of inference. 
For example, some influential studies (like Cansler and 
McKenzie’s (2012) comparison of multiple pixel value 
extraction methods) are widely cited by subsequent investi-
gators but without validating their effectiveness in subse-
quent studies or in new regions. However, such studies may 
be highly site- and context-specific, and it is unclear how 
broadly applicable their results are. In other cases, attempts 
to compare different approaches, such as using sensors with 
varying spatial resolution, are confounded by lurking vari-
ables – in this case, the spectral resolution of different 
sensors and the spatial synchrony with field plots (van 
Wagtendonk et al. 2004; Holden and Evans 2010; Tanase 
et al. 2015a; Mallinis et al. 2018; García-Llamas et al. 2019). 
While several of these studies found slight improvements for 
sensors with high spatial resolution compared with Landsat 
imagery (Holden and Evans 2010; Mallinis et al. 2018;  
García-Llamas et al. 2019), it is difficult to disentangle 
their results to isolate the effects of the spatial resolution 
of the sensors. Finally, there may not yet exist any compar-
ative studies in the current literature assessing the effect of 
georeferencing remotely sensed data on model results. 
Although 27 of 62 studies conducted or investigated the 
need for georeferencing (or co-registration between image 
pairs), no studies presented comparative analysis of the 
impacts on model results. 

Realistically, only studies that replicate their methodo-
logical approach (e.g. use similar methods of collecting field 
observations, include unburned field plots, extract pixel 
values over plot centre with the same method, etc.) can be 

compared across each other. It is not well-quantified what 
level of uncertainty arises in comparing results across dif-
ferent studies where methodologies were not consistent. 
Therefore, more broad-scale comparative studies are needed 
to understand the transferability of methods across land-
scapes and methods/technologies. 

Compounding uncertainty 

Studies have investigated individual slices of the ‘decision 
menu’ (i.e. the many potential analytical approaches to a 
particular step in the analysis; Fig. 2), but none have looked 
at how uncertainty compounds across the whole analysis 
process from beginning to end. Stambaugh et al. (2015) 
assessed the compounding uncertainty across three decision 
points: (1) two index value extraction methods (none and 
bilinear interpolation); (2) two timings of remotely sensed 
data (initial vs extended assessment); and (3) two spectral 
indices (dNBR vs RdNBR). Their analysis thus followed 
23 = 8 different pathways and showed that R2 for models 
of overall CBI values ranged from 0.03 to 0.61. This study 
demonstrates the importance of understanding not just how 
each slice of the decision menu can affect model results but 
also how those uncertainties can be compounded through 
different analytical pathways. Additionally, because many 
of the comparative studies discussed above provide mixed 
results when looking at a single decision point, it is unclear 
how important such choices are at the global scale of analy-
sis. A comprehensive study of the many potential analytical 
approaches would help understand when differences at dif-
ferent decision points wash out and when they do not, 
allowing us to understand when we are seeing ‘true’ differ-
ences among studies and when those are due to differences 
in the methods used. 

Key gaps 

We identified several key research gaps or biases in the 
studies reviewed. The previous sections addressed the 
importance of comparative studies targeting key points in 
the ‘decision menu’ of an analysis. Here, we identify where 
individual studies are absent or lacking from the literature 
identified in our review. 

The uneven distribution in the types and locations of fires 
studied has important implications for how widely applica-
ble the results are across different fires and geographies in 
the future. First, most fires were wildfires, with some pre-
scribed and wildland fire use fires. Although this makes 
sense from a perspective of pre-fire management and post- 
fire intervention, there is reason to question whether pre-
scribed fires behave in fundamentally different ways than 
wildfire. For example, Arkle and Pilliod (2010) found that 
prescribed fires did not mimic the ecological effects that 
followed wildfire in a riparian ecosystem; both the extent 
and severity of vegetation burned was substantially lower in 

Modelling

Model(s) used

Evaluation metric(s)

Strata speci�c models

Individual vs multi-�re models

Field data as predictor or
response

Fig. 13. Analytical decisions to be made during modelling phase.   
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the prescribed fire compared with nearby wildfires. How 
severity models based on remotely sensed data under such 
conditions might differ remains unclear. Some landscapes, 
such as those in the southeast USA, experience primarily 
prescribed fires – where resources for post-fire assessment 
may be more heavily allocated to determining if the burn 
objectives were successfully achieved. In those cases, the 
CBI protocol may be overly broad, and other, more direct 
measures of ecosystem change may be preferred (Morgan 
et al. 2014). 

Second, there was a heavy geographical bias towards the 
USA and especially western USA, as well as a heavy focus on 
temperate coniferous forests. These results reflect that west-
ern USA (1) has a long history of wildfire research; 
(2) experiences large fires in many forested areas; and 
(3) has high spatial variability in fire regimes and bio-
diversity (Heyerdahl et al. 2001; Morgan et al. 2001). 
However, the concentration of fire research in this area 
may also mean that major swathes of ecosystems elsewhere 
are unstudied. Non-forested areas, such as frequently burn-
ing grasslands, aren’t suitable for assessments with CBI (i.e. 
it is difficult to classify burn severity as anything other than 
burned and unburned). However, some regions that are 
forested and experience frequent fires or have extensive 
fire histories (e.g. Italy, France, Indonesia, or Brazil) are 
not highly represented by CBI studies. One reason for this 
could be different research traditions or regional research 
history. For example, in Australia, alternative visual estima-
tion approaches have been used (Hammill and Bradstock 
2006; Chafer 2008) instead of CBI. A second reason may be 
due to differences in the underlying ecology of post-fire 
responses. For example, some forests grow back in very 
different ways (e.g. resprouting eucalypts) compared with 
temperate and boreal forests, where CBI was originally 
developed. Although other regions may have different 
ways of conducting field estimates of severity not included 
in this review, the ability to make comparisons between 
those studies and CBI is limited. 

The limited range in the size and timing of field plot 
collection limits our understanding of how field data at 
different scales affects model variability and of long-term 
ecosystem change. First, there was a strong bias towards 
30-m diameter plots, raising the question of what spatial 
scales are missing in current analyses. The CBI was initially 
designed with 30-m diameter plots to match the spatial 
grain of imagery collected by the Landsat satellite program 
(Eidenshink et al. 2007), but has since been adapted and 
related to many different sensors of both higher and lower 
resolution (Supplementary Table S6). Second, we found a 
relative lack of more extended intervals between fire occur-
rence and field data collection (on the order of 3–10 years 
post-fire), as well as an absence of studies conducting 
repeated measurements. 

Although the collection of field data is often limited by 
site accessibility, high costs, and time constraints (Chuvieco 

et al. 2006; Boucher et al. 2017), there are clearly opportu-
nities for studies that sample outside the range of commonly 
used field plot sizes and timing delays. For example, studies 
could collect very large field plots (e.g. 250 m diameter); 
however, such an endeavour might take weeks to months, 
and environmental factors such as rain or wind could affect 
measurements (Meng and Meentemeyer 2011). It remains 
unclear how sampling very large field plots may impact 
relationships with remotely sensed data, especially those 
of relatively coarse spatial resolution. Additionally, studies 
could collect plots at extended times post-fire. However, it 
becomes more difficult to see burn severity effects on the 
ground. Most studies conform to the 1–2 year time frame of 
‘initial’ and ‘extended’ assessments described by Key and 
Benson (2006), and the effectiveness of the CBI protocols 
over extended time-periods has not been well studied. This 
could be because burned areas can become very hazardous 
to assess because of falling trees and branches, making 
access challenging over time. 

The 15 model forms used across the studies begs the 
question of how robust results are to uncertainty in model 
form. The sheer number of model forms in the studies 
reviewed shows the diversity of statistical approaches used 
to link remotely sensed data to field observations. We identi-
fied two main considerations in the choice of model form: 
(1) the behaviour of remote sensor and ecosystem considera-
tions (sensor saturation, nonlinearity at high severities); and 
(2) model performance (based on evaluation metrics). 
Although studies such as van Wagtendonk et al. (2004) mod-
elled CBI using a quadratic model, the predicted reduction in 
CBI at high dNBR values is not an expected behaviour of the 
sensor-ecosystem dynamic (Hall et al. 2008). Thus, some 
studies argued for nonlinear models with saturated growth 
characteristics (e.g. CBI = dNBR × (a[dNBR] + b)−1; Hall 
et al. 2008), even when this choice is not strictly supported 
by model evaluation metrics. The motivations for selecting 
different model forms were seldom described, but many stud-
ies clearly tried to find the best descriptor of the observed 
relationship. In studies that considered the sensor-ecosystem 
dynamic, predicting a trend that is feasible in the real world 
overrode the aim for strong performance (Hall et al. 2008;  
Boucher et al. 2017). That said, studies rarely compared more 
than a few models, and the robustness of relationships 
to uncertainty in model form is not well understood. 

Finally, the mixed results in the 14 of 62 studies that 
modelled CBI across strata demonstrated that conceptual 
models of remote sensed data reported strengths or weak-
nesses in correlating with specific burn severity measures 
that would not be expected from theory. Specifically, we 
identified some studies showed stronger relationships in 
lower canopy strata – in conflict with accepted theory that 
passive remotely sensed data are limited by low signal 
penetration (Chen et al. 2015) and disproportionately cap-
ture changes in the upper canopy (Kasischke et al. 2008). 
Several studies support the theory that passive sensors are 
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more likely to detect fire effects in the upper part of the 
vegetation stratum (Patterson and Yool 1998; Hudak et al. 
2004; De Santis and Chuvieco 2009). Conceptually, the 
ability to capture change in lower canopy strata is impacted 
by vegetation density, because burned landscapes may 
reflect more changes in the overstorey strata due to the 
shielding effect of vegetation or their remains (Soverel 
et al. 2011; Tanase et al. 2011). Although relationships 
between field observations and remotely sensed data were 
generally strong in the overstorey components, large tree 
stratum, and vegetation components (Chen et al. 2011,  
2015; Meng and Meentemeyer 2011; Stambaugh et al. 
2015; Wu et al. 2015; Warner et al. 2017), two studies 
found that the understorey components outperformed 
higher canopy strata (Hoy et al. 2008; Tanase et al. 2011). 
These exceptions to the conceptual rule-of-thumb that pas-
sive remotely sensed data are limited in their ability to 
detect change in lower canopy strata deserve more scrutiny 
and better understanding of the conditions under which 
lower forest strata may be observed. 

Importance of providing rationales 

Our research highlighted the importance – especially given 
the lack of consensus on analytical methods – of providing 
rationales for each decision in the analysis workflow that 
link back to the research objectives. For example, in regards 
to the two previously stated considerations that drove the 
choice of model form in the reviewed studies, it would be 
beneficial for future investigators to more explicitly give the 
rationale behind their model selection methods and state the 
conditions under which those models can be appropriately 
interpreted. Choosing to sacrifice model performance for 
predictions that correspond to expected behaviour of the 
sensor and ecosystem dynamic may create difficult compar-
isons across fires or regions, but it also provides considera-
ble benefit in that they reflect the true nature of the system. 
Both approaches are equally valid given conforming 
research objectives, but we suggest that studies (1) consider 
the purpose of their analysis when determining appropriate 
models to assess and (2) convey whether weaker model 
performance metrics may result from their decisions. 

Similarly, we found that studies did not always state their 
rationale for using field data as either predictor or response 
variables depending on their research objectives. In typical 
regression analysis, a causal relationship is implied between 
one or more predictors, and a response (Bordacconi and 
Larsen 2014). Cansler and McKenzie (2012) used this logic 
to argue for CBI as a predictor variable, because burn sever-
ity changes reflectance, not the other way around. They 
further stated that CBI has the greatest certainty associated 
with its meaning and thus should be used to predict the 
variables with no inherent ecological meaning (e.g. dNBR or 
RdNBR). Conversely, in some cases CBI (or other ground 
severity measure) may serve as a response variable, with 

remotely sensed data serving as the predictor variable if the 
main study goal is to predict severity on the ground (Zhu 
et al. 2006). In these cases, studies taking this approach 
follow the logic that the known value in a satellite image 
(e.g. RdNBR) is the predictor variable being used to model 
the unknown value on the ground (e.g. tree mortality) as the 
response variable. Both approaches have their benefits and 
challenges, though readers could benefit from more studies 
explicitly describing when and why field data are consid-
ered as predictor versus response variables, because model 
configuration affects the ability to compare across studies. 

The analytical process of modelling of continuous com-
posite severity measures using remotely sensed data can be 
split into three main phases: (1) collection of field data; 
(2) collection of remotely sensed data; and (3) modelling. 
We provide figures that break down the main decisions that 
can be made at each phase (Figs 11–13). This blueprint for 
preparation and analysis should be useful for considering 
key decisions in study design as well as emphasising the 
choices that should be justified when reporting study results 
(see example rationales in Table 12). 

Study limitations 

Many decisions discussed in this paper revolve around 
image quality and availability, and problems with compara-
bility and synthesis across disparate collections of CBI data 
result from this limitation. The selection of suitable 
remotely sensed imagery requires consideration of many 
different characteristics, including solar zenith angle, atmo-
spheric effects, plant phenology, and the availability of 
cloud-free imagery (Rogan et al. 2002; Epting et al. 2005;  
De Santis and Chuvieco 2007; Ju and Roy 2008). If 
bi-temporal indices are used, then inter-annual meteorolog-
ical differences (Veraverbeke et al. 2010) and the misregis-
tration of image pixels (Verbyla and Boles 2000) must also 
be considered. Sensor differences and some atmospheric 
effects may be corrected through radiometric normalisation 
methods, but differences in vegetation phenology may be 
unavoidable, particularly in cloudy regions where there may 
be few cloud-free images available (Epting et al. 2005). 
Furthermore, the seasonality and lag timing of post-fire 
imagery can impact the values of spectral indices. For exam-
ple, RdNBR is sensitive to ash cover, which declines with 
time since fire (Miller and Quayle 2015). Therefore, RdNBR 
values that represent total mortality can be different imme-
diately post-fire compared with the following year.  
Veraverbeke et al. (2010) provide an in-depth discussion 
of the effect of seasonal timing on index values. 

Although limitations in image availability interact and 
potentially exacerbate the other problems/limitations that 
were identified in previous studies, our review focuses on 
the wider set of methodological practices. Future meta- 
analyses could focus on CBI datasets that cover broader 
extents (Picotte et al. 2019) and spectral index processing 
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Table 12. Key decisions and potential rationales for each phase of study design and analysis.     

Phase Decision Potential rationales   

Field data Which type of field severity index to 
capture (CBI, GeoCBI, WCBI, BSI) 

Compare multiple field methods 

Provide data for strata % cover so weightings can be calculated 

Use best performing index based on literature 

Modifications to field protocol (inclusion/ 
exclusion of ecosystem attributes, change 
to height thresholds) 

Match sampling methods to specific ecosystem characteristics 

Match timing of remotely sensed data collection 

Distribution by severity, including 
sampling of unburned areas 

Obtain balanced number of observations across fire(s) 

Anchor models at low end of severity/identify thresholds of change that can be 
attributed to fire and not due to artifacts of mismatched phenology or other 

Number of field plots Capture variability of burned landscape 

Tradeoff in intensity of sampling effort (sample less) and power of statistical tests 
(sample more) 

Size of field plots Match area observed by remotely sensed data 

Shape of field plots Justifications for circular or square plots not provided by existing literature 

Timing of data collection Match timing of remotely sensed data (synchronise data collection with availability of 
remotely sensed data) 

Capture immediate or delayed effects of fire (initial assessment vs extended 
assessment) 

Location of field plots (homogeneous 
areas vs random sampling) 

Mitigate geometric errors in locations of field plots and remotely sensed data (sample in 
homogeneous areas) 

Investigate relationships at edges (random sampling) 

Remotely 
sensed data 

Type of sensor(s) sampled Compare new technologies to long history of Landsat data 

Identify tradeoffs in passive versus active remote sensors 

Radiometric corrections Test different algorithms 

Use well-known method or justification of existing literature 

Geometric corrections Use well-known method or justification of existing literature 

Types of indices (single or bitemporal, 
number of indices, inclusion of offset) 

Single date: avoid challenge of pairing pre- and post-fire images based on phenology and 
moisture between two collection dates ( van Wagtendonk et al. 2004;  Parks et al. 2018); 
less expensive, less time consuming, reduce inherent error found in bitemporal 
approaches ( Koutsias et al. 1999) 

Bitemporal: avoid difficulties in mapping spectrally similar areas, such as water, shadow, 
or dark soil and recent burns ( Bastarrika et al. 2011;  Veraverbeke et al. 2011) or 
senescent vegetation and older burns ( Pereira and Setzer 1993;  Pereira 1999); avoid 
misclassification of non-flammable features ( Kolden and Rogan 2009); control for 
spectral variability unrelated to fire, such as that due to image differences in solar 
illumination, atmosphere, phenology, and spatial registration ( Escuin et al. 2008;  Verbyla 
et al. 2008) or differences in the pre-fire forest condition ( Cansler and McKenzie 2012;   
McCarley et al. 2017) 

Offset: account for interannual variation in phenology ( Miller et al. 2009); make 
comparisons among multiple fires ( Miller and Thode 2007;  Parks et al. 2014) 

Index value extraction Compare multiple methods; use method based on prior literature 

Modelling Model(s) used Identify strongest performing model based on evaluation metrics 

Match expected behaviour of system 

Evaluation metric(s) Focus on overall fit of model 

Identify presence of extreme values in a dataset, which could happen, for example, if few 
high severity areas are included in field observations and pick robust evaluation metrics 
(e.g. MAE over RMSE) 

(Continued on next page) 

www.publish.csiro.au/wf                                                                                                      International Journal of Wildland Fire 

U 

https://www.publish.csiro.au/wf


methods that are less reliant on individual image selection 
techniques (Parks et al. 2021). Studies using these addi-
tional datasets and approaches will likely impact accepted 
research practices and potentially lead to more consistent 
methodologies. Currently, researchers may want to consider 
the effects of those limitations along with other issues we 
raise in this paper. 

One major limitation of this study is that we did not 
evaluate the specific equations used to calculate each spec-
tral index included in the studies. A few references provide 
incomplete equations – for example, in the original Miller 
and Thode (2007) study presenting RdNBR, they do not 
include multiplying by 1000 explicitly in the equation, nor 
any modifications needed to deal with 0 in the denominator. 
Additionally, many studies do not explicitly include the use 
of offset values in the equation. We captured this informa-
tion where available but recommend that authors more 
explicitly state the form of the equations for spectral indices 
as well as any use of offset values. We did not endeavour to 
include the correct equations here (Supplementary 
Table S7), but we note the issue with past inconsistencies. 

Many of the North American studies used overlapping 
CBI datasets (so the datasets are not really independent – 
e.g. Cansler and McKenzie (2012) data were used by Karau 
et al. (2014) as well as Parks et al. (Parks et al. 2014, 2018,  
2019). We also note that much of the CBI datasets analysed 
by the papers in this review are available in a data reposi-
tory for reanalysis (Picotte et al. 2019). 

We did not include studies in our review that used direct 
forest measurements, for example the percentage of tree 
mortality or char and ash colour (see Table 1). This may 
have introduced some geographic bias in which studies were 
excluded because some regions may rely more heavily on 
severity measurements based on direct, individual metrics. 
For example, Morgan et al. (2014) recommend recording 
actual fire measurements that have logical and mechanistic 
connections to the properties a sensor can detect, avoiding 
the use of composite measures such as CBI that collapse 
multiple ecosystem attributes into a single index. Several 
studies have begun to record direct measures of burn sever-
ity rather than CBI only (Whitman et al. 2018; Harvey et al. 
2019; Saberi et al. 2022), though detailed field measures of 

burn severity remain rare compared with the widespread 
use of CBI. Another alternative approach to characterising 
burn severity over large areas uses lidar data to more 
directly measure changes in forest structure (McCarley 
et al. 2017). Although using multi-temporal lidar to examine 
changes in forest structure due to fire would allow more 
precise measurement of individual metrics (e.g. change in 
canopy cover), reduce observer bias, and allow quantifica-
tion of change in areas without nearby unburned reference 
sites, the approach remains limited by the availability of 
pre- and post-fire lidar at adequate time intervals. 

Recommendations 

Given the difficulty of synthesising results across studies 
that used varying methodologies, we support efforts such 
as Picotte et al. (2019) to aggregate and disseminate data-
sets based on composite severity field observations from 
investigators. This could provide the necessary information 
to conduct a meta-analysis of the effects of compounding 
error across the ‘decision menu’ presented in this review. 
Additionally, we recommend future studies complete the 
following:  

• Collect and share field data in such a way that the original 
and modified composite severity measures identified in 
this review (CBI and GeoCBI/WCBI) could all be calcu-
lated, thus facilitating further comparisons among the 
different field measures. Such a request may require the 
development of a new CBI field collection form for collec-
tion of raw field measurements that could be used to 
calculate any of these.  

• Report full detail of any processing and analysis. For this 
review, we followed up with authors where information 
was missing; however, we were not able to obtain infor-
mation requested in every case. For a list of recommended 
information to report, Table 13.  

• Report the reasoning for methodological choices at each 
step in the analysis. One of the goals of this review was to 
identify key analytical decisions and potential reasons 
why investigators may want to make one decision vs 
another (Table 12). 

Table 12. (Continued)    

Phase Decision Potential rationales   

Field data as predictor or response 
variable 

Predict thresholds that correspond to ecological phenomena of interest (use field data 
as predictor) 

Map ecologically relevant response (use field data as response) 

Strata-specific models Investigate behaviour of remotely sensed data in different forest strata 

Predict ecosystem changes in specific strata (e.g. big trees) 

Individual vs multi-fire models Focus on site-specific results 

Identify generality of models across large landscapes or regions   
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Conclusion 

This review of studies linking remotely sensed data to con-
tinuous measures of burn severity measured with the 
Composite Burn Index highlights: (1) the wide range in 
analytical approaches and lack of consensus in methodo-
logical decisions; (2) the scarcity of comparative studies at 
any one point in the ‘decision menu’ and absence of a 
comprehensive beginning-to-end quantitative analysis of 
compounding uncertainty throughout the analysis frame-
work; and (3) key gaps in research relating to the distribu-
tion in the types and locations of fires studied, limited range 
in the size and timing of field plot collection, and modelling 
of CBI across strata. 

The results of this review provide a framework for future 
studies linking remotely sensed data to continuous measures 
of severity by summarising the key analytical decisions and 
the distribution of studies using such techniques. We avoid 
concluding which methods or decisions perform best and 
instead focus on the importance of understanding the wide 
varieties of ways this type of research has been done, and its 
potential impacts on our understanding of the state of the 
science. We find that much uncertainty remains in light of a 
lack of comparative analysis and biases in the study designs. 
In the absence of a consensus approach to modelling sever-
ity using remotely sensed data, we suggest future research 
explicitly state their rationales for each analytical decision 
and how it relates to their specific research questions. 

Supplementary material 

Supplementary material is available online. 
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