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Human- and lightning-caused wildland fire ignition clusters in 
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ABSTRACT 

Wildland fire is a common occurrence in western Canada, with record-setting area burned 
recorded in British Columbia (BC) in the past decade. Here, we used the unsupervised machine 
learning algorithm HDBSCAN to identify high-density clusters of both human- and lightning- 
caused wildfire ignitions in BC using data from 2006 to 2020. We found that human-caused 
ignition clusters tended to occur around population centres, First Nations communities, roads 
and valleys, and were more common in the southern half of the province, which is more 
populated. Lightning-ignition clusters were generally fewer in number and larger in size than 
human-caused fires for most hyperparameter settings. There were significant differences 
(X2 = 1884.8, d.f. = 7, P-value <2.2 × 10−16) in fuels associated with lightning- versus human- 
caused ignition clusters, with human-ignition cluster fires being more often found within leafless 
aspen (D1) and ponderosas pine and Douglas fir (C7) fuel types. These high-density clusters 
highlight regions where the greatest densities of both lightning- and human-caused fires have 
occurred in the province, thereby identifying regions of potential interest to wildland fire 
managers, researchers and various communities and industries.  

Keywords: Canada, clustering, fuels, HDBSCAN, human-caused fires, interface fires, lightning- 
caused fires, unsupervised machine learning. 

Introduction 

Wildland fire has been a longstanding feature of Canadian forests, where many species of 
flora and fauna have evolved with fire as a recurring disturbance (Coogan et al. 2021). 
Although wildland fire provides many positive benefits to Canadian forests, it can 
obviously have significant (even catastrophic) impacts when it affects communities 
and infrastructure (Coogan et al. 2019). Wildfires in Canada have burned an average 
of 1.96 Mha per annum based on data from 1959 to 2015, and there has been a 
significant increase in the number of large wildfires (≥200 ha) and area burned during 
this time, possibly due to increases in lightning-caused fires (Hanes et al. 2019). The main 
ignition sources of wildfires in Canada are lightning and people, each accounting for 
~50% of ignitions nationwide (Stocks et al. 2002; Hanes et al. 2019; Coogan et al. 2020). 
The number of human-caused fires in Canada, which account for approximately 10% of 
total area burned, appears to have decreased since 1959 (Hanes et al. 2019). Human- 
caused fires, however, often occur during the shoulder seasons, which has resulted in an 
increase in the length of the fire season in several regions in Canada and elsewhere (Balch 
et al. 2017; Hanes et al. 2019). 

Human-caused wildland fires occur most often in interface areas that are in close 
proximity to where people reside or have access (Pew and Larsen 2001; Gralewicz et al. 
2012; Price and Bradstock 2014; Johnston and Flannigan 2018). The wildland–urban 
interface (WUI) is a term used to describe areas where people and their developments are in 
contact with, or are dispersed within, wildland fuels (USDA and USDI 2001). Despite the 
name, the WUI also includes areas that may not be considered urban per se such as small 
population centres, reservations and holiday communities (Johnston and Flannigan 2018). 
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Expanded definitions of the WUI have been developed in 
Canada to include the wildland–industrial and wildland– 
infrastructure interfaces, which all together can be considered 
the wildland–human interface (Robinne et al. 2016; Johnston 
and Flannigan 2018). Lightning-caused fires tend to occur in 
wildland–human interface areas in lower proportions than 
human-caused fires and often occur in more remote areas of 
Canada where human access is limited (Johnston and 
Flannigan 2018). Lightning-caused fires in remote areas are 
often left to burn freely for positive ecological benefits 
(Tymstra et al. 2020). On the other hand, lightning-caused 
fires can also be associated with high suppression costs and 
have a greater chance of becoming large fires than human- 
caused fires, which tend to occur closer to population centres 
where detection may be quicker and fire suppression more 
aggressive (Stocks et al. 2002). 

Given that human-caused fires tend to occur in areas close 
to human population centres, developments and recreational 
areas, it is likely that such fires are geographically clustered. 
Likewise, lightning-caused fires may also be geographically 
clustered, likely in relation to the distribution, type and 
receptivity (i.e. moisture content) of wildland fuels and 
topography, as well as patterns of lightning-weather activity 
(Nadeem et al. 2020). However, such clusters may not be 
readily apparent. Identifying ignition clusters is important 
for characterising the spatial distribution of wildland fire, 
which is of direct importance to wildland fire management 
and suppression planning, including for the prevention and 
preparedness phases. Furthermore, a better understanding 
of ignition clusters may lead to ecological insights given 
the prominent role fire can play in ecosystems (Coogan 
et al. 2021). 

Recently, researchers have suggested that machine learn-
ing may be useful for further understanding the intricacies 
of wildland fire (Jain et al. 2020). In this paper, we explore 
an unsupervised machine learning algorithm to identify 
geographic high-density wildfire ignition clusters for both 
human- and lightning-caused fires in British Columbia (BC), 
Canada. The province of BC has experienced noteworthy 
fire activity in recent years, with record-setting area burned 
in 2017 and 2018 (Government of BC 2021). The province 
also contains among the highest amount of WUI areas in 
Canada (Johnston and Flannigan 2018). More recently, the 
2021 heat wave prompted another active fire season in BC 
in which the town of Lytton was largely destroyed by wild-
fire (Schiermeier 2021). Extreme fire weather has increased 
over time in BC (Jain et al. 2021), and more challenging fire 
seasons are expected in the future owing to climate change 
(Wang et al. 2017; Wotton et al. 2017). 

In this paper, we focus on clustering wildfires in BC using 
the density-based algorithm HDBSCAN (Hierarchical Density- 
Based Spatial Clustering of Applications with Noise; Campello 
et al. 2013; McInnes et al. 2017) to identify areas with the 
highest densities of both lightning- and human-caused fires. 
We also compared the fuel types associated with clusters in 

the province. The regions associated with the clusters identi-
fied using HDBSCAN are likely to be of interest to wildland 
fire managers, researchers, ecologists, communities and 
industries, among other interested parties in the province 
and beyond. This research is also likely to be of interest to 
those interested in unsupervised machine learning clustering 
as well as those wishing to understand the spatial clustering 
of human- and lightning-caused wildland fire events more 
generally. 

Materials and methods 

Study area 

BC contains a variety of ecosystems including temperate 
rainforest, semideserts, grasslands, boreal forest and alpine 
tundra, depending on such factors as proximity to the 
Pacific Ocean, latitude and topography (Meyn et al. 2010). 
Mountains comprising part of the North American Cordillera 
run from south to north through BC and restrict westward 
airflow, resulting in rain-shadow effects east of the mountains 
ranges including in parts of Alberta (Wierzchowski et al. 
2002; Moore et al. 2010). 

The different characteristics of the various ecosystems in 
the province, including canopy cover and surface fuel prop-
erties, influence various wildland fire ignition factors such 
as fuel moisture wetting and drying rates and thus fuel 
receptivity to ignition. The moisture content and receptivity 
of fuels in western Canada is strongly influenced by the mid- 
latitude storm track, which brings high-moisture air from 
the Pacific to western Canada. In the summer (approxi-
mately June to August), the North Pacific High often blocks 
the flow of this high-moisture air, resulting in warm and dry 
conditions that can last many weeks and increase the dry-
ness of both surface and deep organic fuel layers (Nadeem 
et al. 2020). In fact, climate change may cause an increase in 
blocking ridges that persist for long periods in western 
Canada, thereby creating more dangerous wildland fire con-
ditions (e.g. Petoukhov et al. 2018). 

Lightning occurrence is highly episodic and mostly occurs 
during dominant storm events. Across Canada, cloud-to- 
ground lightning occurs primarily from June to August 
(Burrows and Kochtubajda 2010). Similarly, the majority of 
lightning-caused fires ≥2 ha in BC occur in August (Coogan 
et al. 2020). Regarding lightning-ignition efficiency, 1 in 50 
(2%) lightning discharges have been shown to start a fire in 
BC’s central Cordillera (Wierzchowski et al. 2002). 

Population centres are primarily located in the southern half 
of the province (Supplementary Material S1, Supplementary 
Fig. S1). Outdoor recreation and camping are popular in BC, 
with some regions experiencing high numbers of tourists. 
Human-caused fires tend to occur primarily in the spring 
(during April and May; Coogan et al. 2020). Because the 
bulk of human-caused fires tends to occur during the shoulder 
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seasons (i.e. primarily in the spring, but also in the autumn) 
outside the typical lightning-caused fire season, they extend 
the length of the fire season overall (Hanes et al. 2019;  
Coogan et al. 2020). 

Data 

Fire data 
We used point data from the Canadian National Fire 

Database (CNFDB; Canadian Forest Service 2021) for our 
analysis. The CNFDB point data are a dataset of wildfire 
locations provided collaboratively by Canadian fire manage-
ment agencies and are available online. The database has 
some limitations, however, as it may include errors, and 
data completeness and quality may vary over time and 
among contributing management agencies – see Hanes 
et al. (2019) for a discussion on the strengths and limitations 
of Canadian fire databases. At the time of our analysis, the 
CNFDB point data were available up to and including the 
year 2020. We did not include Parks Canada agency data in 
our analysis, because many of those fires did not include 
specific geographic coordinates. We focused our analysis on 
a 15-year period from 2006 to 2020: we reasoned that such 
a period would include data recorded and collected using 
similar and consistent methods, as procedures have changed 
over longer time periods. Furthermore, there has been an 
increase in extreme fire weather globally during this period 
(Jain et al. 2021). We clustered fires of all sizes because we 
were interested in identifying clusters of fire ignitions 
regardless of their final size. The subsets of human- and 
lightning-caused raw data ignition points we used in our 
analysis are displayed in Supplementary Material S1, 
Supplementary Figs S2, S3. The wildfire ignition points 
were clustered based on their geographic location, where 
the latitudes and longitudes of the spatial points were trans-
formed to radians for input into the haversine distance 
calculation before clustering. 

Other data 
We used a basemap and anthropogenic data to help put 

the geographic clustering of human- and lightning-caused 
fires in context with landscape features and characteristics. For 
instance, we used road data from the CanVec series published 
by Natural Resources Canada (https://open.canada.ca/data/ 
en/dataset/8ba2aa2a-7bb9-4448-b4d7-f164409fe056) and 
population centre data from Statistics Canada (https:// 
www12.statcan.gc.ca/census-recensement/2011/geo/bound- 
limit/bound-limit-2016-eng.cfm) (Supplementary Material 
S1, Supplementary Fig. S1). Figures and clustering were 
created using Python version 3.85, with the exception of 
fuels raster maps and chi-squared tests, which were pro-
duced using R version 4.1.0 (see below). We used the mat-
plotlib plotting library (Caswell et al. 2021) to create figures 
and the contextily package (https://contextily.readthedocs. 
io/en/latest/) for the basemaps; note that the contextily 

basemaps used the Web Mercator projection (EPSG:3857). 
To evaluate the relationships between clustering and fuel 
types, we used the aggregated (40-km pixel size) Forest Fire 
Behaviour Prediction (FBP) System fuel type raster classifi-
cation (Supplementary Material S1, Supplementary Fig. S4) 
published in Wotton et al. (2017). This larger-scale raster is 
based on the assumption that fire will burn the more volatile 
fuels in a raster cell. Significant differences in fuel types 
associated with cluster and non-cluster fire points were 
evaluated using the chi-squared test. 

HDBSCAN clustering 

About HDBSCAN 
There were several reasons we used the HDBSCAN algo-

rithm to identify high-density clusters of wildfire ignition 
points in BC. HDBSCAN assigns high-density regions to 
clusters while leaving out noise (i.e. ‘outliers’) that does 
not belong to a particular cluster – compare this with 
other partitioning clustering algorithms, such as k-means, 
which partitions all points in a dataset to a particular cluster. 
This was useful for our application, as the plots of the raw 
data (Supplementary Material S1, Supplementary Figs S2, 
S3) showed that there was extensive coverage of wildfire 
ignition points across the province that were likely not 
representative of areas in which a high density of wildfire 
ignitions had occurred. HDBSCAN also works well for arbi-
trarily shaped clusters (as opposed to algorithms that assume 
spherical clusters), which is useful for identifying clusters 
along valleys and roads. HDBSCAN also offers an improve-
ment over the original DBSCAN algorithm (Ester et al. 1996) 
by identifying clusters of different sizes and densities. 
HDBSCAN also allows for the use of the haversine distance 
metric (Robusto 1957), important in navigation, which 
determines the great-circle distance between two points on 
a sphere given their latitudes and longitudes (the haversine 
metric thus assumes that the Earth is a sphere). The haver-
sine metric may provide a more realistic distance metric for 
clustering geolocation data across larger distances than 
Euclidean distance (Maria et al. 2020). HDBSCAN also auto-
matically selects the optimal number of clusters for a particu-
lar dataset, which is advantageous for our unlabelled dataset 
in which the ‘true’ clusters are not known – this is also an 
advantage over some other popular algorithms that require 
the number of clusters to be given a priori. 

In short, the basic mechanics of HDBSCAN follows a series 
of five steps to develop clusters (https://hdbscan.readthedocs. 
io/en/latest/how_hdbscan_works.html). In the first step, 
HDBSCAN transforms the space according to the density 
of points. Second, a minimum spanning tree of a distance- 
weighted graph is constructed, followed by the third 
step, in which HDBSCAN builds a cluster hierarchy of 
connected components. In the fourth step, HDBSCAN 
condenses the cluster hierarchy based on the minimum 
cluster size (hereafter ‘min_cluster_size’) hyperparameter 
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(which is set by the user), and, in the fifth step, extracts 
stable clusters from the condensed tree. 

Hyperparameter tuning and selection 
There are two main hyperparameters to set when using 

HDBSCAN, namely min_cluster_size and min_samples. 
Additional advanced parameters can be set in HDBSCAN; 
however, we do not delve into these options in this paper. 
For more information on these hyperparameters, we refer 
the reader to the HDBSCAN Clustering Library (https:// 
hdbscan.readthedocs.io/en/latest/index.html). 

The primary parameter affecting clustering results is 
min_cluster_size, which is the minimum number of points 
that a final cluster can contain. There is no objective method 
for selecting min_cluster_size: it is chosen based on domain- 
specific knowledge and experimentation. The HDBSCAN 
documentation states that ideally min_cluster_size is a fairly 
intuitive parameter to select; however, this may not always 
be the case in practice. In general, the higher min_cluster_size 
is, the larger clusters will be. Likewise, setting min_cluster_ 
size lower will generally result in a greater number of smaller 
clusters. 

The hyperparameter min_samples is the minimum num-
ber of neighbours to a core point. In essence, min_samples 
provides a way to adjust how conservative the model will 
be. The larger the value of min_samples (which cannot 
exceed min_cluster_size), the more conservative clustering 
will be – more points will be assigned as outliers (noise) and 
the clusters will be restricted to increasingly dense areas. 
The default min_samples setting is the same as min_cluster_ 
size because this is considered to be a reasonable default; 
however, the min_samples parameter can be adjusted if 
users are having problems with clustering. 

Advanced adjustments to both min_cluster_size and min_ 
samples can be made depending on the desired clustering 
outcome. For example, three basic clustering strategies may 
include: (1) using a small min_samples and a small min_ 
cluster_size for many highly specific clusters; (2) using a 
small min_samples and a large min_cluster_size for more 
generalised clusters with high detail; (3) using a large min_ 
samples and a large min_cluster size for very general clusters 
with a lot of noise (outliers) removed. 

In our paper, we focused on optimising the hyperpara-
meter min_cluster_size where we set the search space to 
contain a range of min_cluster_size values in increments of 
25, from 25 to 200 (i.e. 25, 50, 75, 100, 125, 150, 175 and 
200) and left min_samples at the default value (i.e. the same 
as min_cluster_size). After evaluating the results of varying 
min_cluster_size, we explored varying min_samples, the out-
comes of which are described in the Results section. 

A note should be made here about our philosophy 
regarding the final hyperparameter selection for clustering. 
As described above, we chose to select hyperparameter set-
tings and clustering results based on our expert opinion, 
where our primary goal was to choose the hyperparameter 

settings that balanced the trade-off between generating 
many very small localised clusters and fewer larger, more 
generalised clusters at the provincial scale. Clustering itself 
can be a subjective exercise where there is no definition of 
what a ‘true’ cluster is (Hennig 2015), especially for unlabelled 
datasets such as ours. Methods exist for evaluating various 
clustering outcomes; however, many of these common indices 
are not appropriate for density-based clustering. The Density- 
Based Clustering Validation (DBCV) method can be used to 
evaluate HDBSCAN clustering outcomes, but this method also 
has limitations (Moulavi et al. 2014). Experts have been 
considered to be more consistent in evaluating clusters than 
cluster validation indices (Lewis 2009), and this is the 
approach we took for this paper. Given the subjective nature 
of our approach, the full clustering results of our hyperpara-
meter exploration are presented in the Supplementary 
Material for transparency and to allow the reader to evaluate 
the sensitivity of the algorithm to the hyperparameter tuning. 
Given the results we obtained, we do not consider this to be an 
inappropriate or controversial approach to our analysis. 

Results 

Human-caused fires clusters 

We found that the number of human-caused fire clusters 
decreased as we increased min_cluster_size from 25 to 200, 
ranging from 58 to 6 respectively (Fig. 1). Although there 
was a fairly large range in the number of clusters produced, 
the clusters themselves were generally found in similar 
locations, whether smaller and more localised or larger 
and more generalised. To illustrate, we display the results 
of clustering with min_cluster_sizes of 25 and 200 in Fig. 1. 
The full range of min_cluster_size figures can be found in the 
Supplementary Material S1, Supplementary Figs S5–S12. 

We explored varying min_samples for human-caused 
fires; however, we did not find that this exercise added 
any more useful information to what we had already 
achieved by varying min_cluster_size (i.e. clusters occurred 
in the same general areas but varied in number and size). 
Thus, we kept min_samples at the default setting and con-
sidered only different min_cluster_size settings. 

For our analysis of human-caused fires at the provincial 
scale, we chose to use a min_cluster_size of 75. One reason 
we chose this hyperparameter setting is that in larger set-
tings, the clusters on Vancouver Island joined together with 
the cluster on the mainland around the Whistler area. 
Likewise, at settings >125, we found that the clusters 
started to become too large in the sense that they covered 
relatively large areas of the province that contained several 
different communities (similar to the clusters formed using a 
min_cluster_size of 200 in Fig. 1). We did, however, consider 
that smaller min_cluster_size values could produce useful 
results at smaller scales. To illustrate this, we examined 
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the clusters generated using min_cluster_size of 25 centred 
around the Kamloops area, which is discussed below. 

Using a min_cluster_size of 75, we found a total of 17 
clusters among the 9503 human-caused ignition points in 
the province of BC from 2006 to 2020 (Fig. 2). Note that in 
the Python implementation of HDBSCAN, cluster numbering 
starts at 0 instead of 1, and points labelled ‘−1’ have been 
identified as ‘outliers’ and are not part of a cluster; we 
maintained this original numbering system. As predicted, 
most human-ignition clusters in BC were associated with 
roads and population centres (Table 1), as were many 
non-cluster outlier points. Some clusters were associated 
with population centres with <1000 inhabitants (e.g. clus-
ters 0 and 8), which were not symbolised on our maps. Large 
population centres with >100 000 residents were also 
found within or adjacent to clusters (e.g. Kelowna in cluster 
11 and Abbotsford in cluster 9). First Nations communities 
were likewise found within some human-caused fire clusters 
such as clusters 3, 8 and 14. Furthermore, Provincial 
Parks and popular recreation areas were associated with 
clusters (e.g. cluster 0). Topography also seemed to play a 
critical role in the location of human-caused fires clusters, 
with many clusters being located in and around valleys (e.g. 
clusters 0, 5 and 11). 

As mentioned previously, we considered that using a 
min_cluster_size of 25 would be useful for examing cluster-
ing at a more localised scale. Thus, we examined clustering 
around the Kamloops region of BC, which has experienced 
noteworthy fire activity across the time scale of our data. 
Twelve distinct clusters formed around population centres 
of all sizes in the region, such as Lytton (<1000 residents), 

Merritt, Kamloops and Kelowna (Fig. 3). Clusters also formed 
around First Nations Reservations such as the Skeetchestn 
and Nooaitch Indian Bands. The largest cluster formed 
around the Okanagan Valley region, which included several 
population centres. Roads and topography (valleys) seemed 
to play a prominent role in the formation of the human- 
caused wildfire clusters. The majority of clusters using a 
min_cluster_size of 25 seemed to be part of larger clusters 
identified using a min_cluster_size of 75; however, some new 
clusters emerged at the lower setting such as the Chase, 
Lillooet and Sicamous clusters. 

Lightning-caused fire clusters 

When we varied the min_cluster_size of lightning-caused 
fires (n = 14 759), we found that fewer clusters were pro-
duced than for human-caused fires, with most forming three 
clusters; however, two clusters were formed when min_clus-
ter size was set to 50 and 200 (Supplementary Material S1, 
Supplementary Figs S13–S21). The pattern of clustering 
stabilised at a min_cluster_size of 75, where the clustering 
did not change much until 200, where the Vancouver Island 
cluster joined the mainland cluster. Interestingly, the domi-
nant three-cluster pattern seems to have a relationship with 
ecozones in the province, with two of the three clusters 
showing a close overlap with the Taiga Plains and Montane 
Cordillera, as demonstrated in Fig. 4 in which we plot the 
clustering results for min_cluster_size 75. 

We varied min_samples for lightning-caused fires using a 
grid search approach, in which we varied min_samples by 1, 
5, 10, 15 20, and 25, as well as the default (i.e. the same 

Min_cluster_size = 25

N

500 km

Clusters
–1
0
1
2
3
4
5

Min_cluster_size = 200

Fig. 1. HDBSCAN clustering results of human-caused fires (2006–2020) in British Columbia, Canada, for min_cluster_sizes of 
25 and 200. Note that HDBSCAN assigns points that do not belong to clusters as −1 (black points) and cluster identification 
numbers start at 0. The legend for min_cluster_size 25 is not shown because there were a total of 58 clusters identified and these 
would not fit in the image. Furthermore, because of the large number of clusters displayed in the min_cluster_size = 25 figure, the 
variation in colours between clusters is very subtle in many cases.    
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value as min_cluster_size) for each min_cluster_size setting 
(Supplementary Material S1, Supplementary Table S1, 
Supplementary Material S2). For min_cluster_size 25, we 
found a large number of clusters produced for min_samples 
of 1, 5 and 10 (189, 145, and 107 clusters, respectively); 
however, clusters returned to three for higher min_samples 
settings. The mode number of clusters produced across our 
grid search was three (n = 26). The second most common 
number of clusters produced was 2 (n = 8) followed by 5 
and 10 (n = 4 each). We found that settings that produced 
five clusters tended to form generalisable groups of the more 
fragmented 10-cluster maps. Furthermore, a min_samples 
setting of 10 for both min_cluster_size 125 and 150 produced 
very similar maps with five clusters. We ultimately chose a 
min_cluster_size of 125 with a min_samples of 10 for our 
analysis of associations with fuels (Fig. 5). This clustering 

resulted in similar clusters in the Taiga Plains and 
Vancouver Island as found in most of our clustering maps; 
however, the larger Montane Cordillera cluster was split 
into three separate clusters, with two of the smaller clusters 
forming in central BC. 

Similarly to our human-caused fire clustering, we also 
explored lightning-caused fire clustering at a low density 
hyperparameter setting (i.e. min_cluster_size = 25, min_ 
samples 10) to examine clustering at a more localised 
scale. This setting produced a large number of clusters 
province-wide (n = 107); however, we focused on a rela-
tively small subset of clusters around the Kamloops area 
(Fig. 6) to draw comparisons with our human-caused fire 
clustering. In this region, more lightning-caused fire clusters 
were found away from population centres than human- 
caused fire clusters; however, some lightning-fire cluster 

–1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

N

Clusters

200 km

Fig. 2. HDBSCAN clusters of human-caused ignition points (2006–2020) in British Columbia, 
Canada. A total of 17 clusters were identified (numbered 0–16). Ignition points labelled −1 (black) 
were identified as ‘outliers’ and are not considered part of a cluster. Population centres are shown 
as circles (1000–29 999), squares (30 000–99 999) and stars (≥100 000). The names of population 
centres associated with clusters are given in  Table 1. Points are plotted on top of a base map with 
roads (brown lines). Basemap tiles provided by Stamen Design, CC BY 3.0 – Map data 
(C) OpenStreetMap contributors. Map projection: Web Mercator (EPSG:3857).    
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areas overlapped with human-cluster areas such as around 
Kamloops. Some lightning-fire clusters were also found 
along valleys and roads, while others were in proximity to 
water bodies. 

Fuels associated with clusters 

We found that the FBP System fuel types associated with 
human ignition cluster points were statistically different 
from human ignition outlier (non-cluster) points (X2 =  
1058.4, d.f. = 8, P-value <2.2 × 10−16; Table 2). The chi- 
square results were most influenced by differences between 
the ponderosas pine and Douglas fir (C7) and leafless aspen 
(D1) fuel types, where a higher proportion of the cluster 
points were associated with these fuels than the outlier 
points; this is demonstrated graphically in a correlation 
plot of the standardised residuals (Supplementary Material 
S1, Supplementary Fig. S22). A small number of points were 
found in the 'no fuels' category, likely due to the larger raster 
aggregation and to error associated with the fire point loca-
tions. However, the number of fires in the non-fuel category 
was relatively small and seemingly acceptable for our pur-
poses (0.1–2.3% for all results in Table 2); therefore, the 
results should still provide a useful generalisation. FBP 
System fuel types associated with lightning-caused ignition 
cluster points were statistically different from non-cluster 
lightning ignition points (X2 = 1688.6, d.f. = 8, P-value 
<2.2 × 10−16; Table 2), where the chi-square results were 
strongly influenced by differences in the mature jack or 
lodgepole pine (C3) fuel type (Supplementary Material S1, 
Supplementary Fig. S23). In fact, no cluster points of either 

Table 1. General population centres and regions associated with 
human-caused wildfire clusters in British Columbia, Canada, from 
2006 to 2020.    

Cluster 
number 

Population centres or region   

0 Valemount,A McBride,A Mt Robson Provincial Park 

1 Fort St John, Dawson Creek, Tumbler Ridge 

2 Terrace 

3 Smithers, Telkwa, Hazelton,A GitanyowB 

4 Prince George, Vanderhoof, Fort St James, Burns Lake 

5 Kimberley, Cranbrook, Fernie, Invermere 

6 Nelson, Salmo, Rossland, Trail, Castlegar 

7 Williams Lake, 100 Mile House 

8 Alexis Creek,B RedstoneB 

9 Abbotsford, Chilliwack, Hope 

10 Sechelt, Gibsons, Squamish, Whistler 

11 Okanagan Valley area (e.g. Vernon, Kelowna, 
Penticton, Osoyoos) 

12 Parksville, Port Alberni 

13 Nanaimo 

14 Kamloops 

15 Merritt 

16 Lytton 

A<1000 residents and therefore not shown on the map. 
BFirst Nations community or unincorporated settlement.  

Fig. 3. Human-caused fire clusters gen-
erated using a min_cluster_size setting of 
25 for the Kamloops region in BC. Points 
in a cluster have the same colour. Non- 
cluster points (i.e. outliers) have been 
removed for clarity. Roads are shown as 
black lines. Population centres are shown 
as circles (1000–29 999), squares 
(30 000–99 999) and stars (≥100 000). 
Lytton had <1000 residents and has no 
symbol on the map. Likewise, the First 
Nations Reservations were not included 
in the population centre data. Basemap 
tiles provided by Stamen Design, CC BY 
3.0 – Map data (C) OpenStreetMap con-
tributors. Map projection: Web Mercator 
(EPSG:3857).    
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lightning- or human-caused fires were found in the C3 
fuel type. Lightning and human clusters were significantly 
different (X2 = 1884.8, d.f. = 7, P-value <2.2 × 10−16), 

and the results were driven mostly by the differences in the 
C7 and D1 fuel types where human-caused fire clusters were 
found in higher proportions (Supplementary Material S1, 

–1
0
1
2

Clusters

N

500 km

Fig. 4. HDBSCAN clusters (min_ 
cluster_size = 75) of lightning-caused 
ignition points (2006–2020) in British 
Columbia, Canada, plotted on top of 
Canadian ecozones including the Montane 
Cordillera (MC), Boreal Plains (BP), Taiga 
Plains (TP), Boreal Cordillera (BC) and 
Pacific Maritime (PM). Basemap tiles by 
Stamen Design, CC BY 3.0 – Map data 
(C) OpenStreetMap contributors. Map 
projection: Web Mercator (EPSG:3857).    

–1
0
1
2
3
4

Clusters

N

500 km

Fig. 5. HDBSCAN clusters (min_ 
cluster_size = 125, min_samples = 10) of 
lightning-caused ignition points (2006– 
2020). Basemap tiles by Stamen Design, 
CC BY 3.0 – Map data (C) OpenStreetMap 
contributors. Map projection: Web 
Mercator (EPSG:3857).    

S. C. P. Coogan et al.                                                                                                         International Journal of Wildland Fire 

H 



Supplementary Fig. S24). C3 fuels were removed from the chi- 
square analysis of human- and lightning-caused clusters 
because there were no cluster points in this fuel type for either 
category. There were also significant differences between fuels 
associated with all (both cluster and non-cluster points) light-
ning ignitions versus all human-caused ignitions (X2 = 1269.7, 
d.f. = 8, P-value <2.2 × 10−16), with a higher proportion of 
human-caused ignitions in D1 and C7 fuels, and fewer in boreal 
black spruce (C2) and open spruce–lichen woodland (C1) fuels 

(Supplementary Material S1, Supplementary Fig. S25). 
Cluster points are shown plotted on the fuel type raster in 
Supplementary Material S1, Supplementary Figs S26, S27. 

Discussion 

An important insight that can be drawn from this paper is 
that high-density clusters of human-caused fires tend to be 

Fig. 6. Lightning-caused fire clusters 
generated using a min_cluster_size set-
ting of 25 and min_samples setting of 10 
for the Kamloops region in BC. Points in a 
cluster have the same colour. Non-cluster 
points (i.e. outliers) have been removed for 
clarity. Roads are shown as black lines. 
Population centres are shown as circles 
(1000–29 999), squares (30 000–99 999) 
and stars (≥100 000). Basemap tiles 
provided by Stamen Design, CC BY 
3.0 – Map data (C) OpenStreetMap con-
tributors. Map projection: Web Mercator 
(EPSG:3857).    

Table 2. The percentage of fuel types associated with wildfires in clusters compared with non-cluster ignitions British Columbia, Canada, for 
both human-caused and lightning-caused fires.        

FBP 
fuel type 

Fuel description Human-caused fires Lightning-caused fires 

Non-cluster (%) Clusters (%) Non-cluster (%) Clusters (%)   

Non-fuel Non-fuel 2.3 0.4 1.1 0.1 

C1 Open spruce–lichen woodland 1.1 <0.1 2.2 1.7 

C2 Boreal black spruce 25.1 19.5 44.6 29.6 

C3 Mature jack or lodgepole pine 1.5 0 7.3 0 

C5 Red and white pine 60.7 46.1 39.8 58.1 

C7 Open Douglas fir or ponderosa pine 9.0 22.1 0.2 9.1 

D1 Leafless aspen <0.1 7.6 1.4 0 

M1 Boreal deciduous and conifer mixedwood 
with 50% conifer or more 

0.4 3.9 3.2 1.3 

M1(25) Boreal deciduous and conifer mixedwood 
with 25% conifer or less 

<0.1 0.3 0.2 0 

There were significant differences between human-caused fires in clusters versus non-clusters (X2 = 1058.4, d.f. = 8, P-value < 2.2 × 10−16), lightning-caused fires in 
clusters versus non-clusters (X2 = 1688.6, d.f. = 8, P-value < 2.2 × 10−16), and between human-caused fire clusters and lightning-caused fire clusters (X2 = 1688.6, 
d.f. = 8, P-value < 2.2 × 10−16).  
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associated with population centres and roads. Furthermore, 
topography seems to have played a role, with many clusters 
forming in more inhabited valleys. This is consistent with 
research that has shown that human-caused ignitions in 
Canada tend to be more frequent in interface areas in 
which humans live and have access (Wotton et al. 2003;  
Gralewicz et al. 2012; Robinne et al. 2016; Johnston and 
Flannigan 2018). Human-caused fires clusters also occurred 
in areas experiencing high levels of industrial activity, such 
as the Fort St John cluster, which may have played a role in 
fire occurrence. Furthermore, human-caused fire clusters 
were found around some population centres that have fairly 
high amounts of tourism and outdoor recreation activities 
such as the Okanagan Valley, Prince George and Mount 
Robson Provincial Park. Clusters also formed in areas with 
First Nations communities, which can be at a high risk from 
wildfire (McGee 2021). 

Identifying human-caused ignition clusters such as the 
ones we did may be a useful initial step in identifying 
problematic areas and may ultimately lead to a better under-
standing of the factors driving these human-ignition hotspots. 
Interestingly, cluster 16 formed around the town of Lytton, 
which was largely destroyed by a wildfire that started on 30 
June 2021, following a day in which the town set the record 
for the hottest day ever recorded in Canada (49.6°C;  
Schiermeier 2021). The cause of the Lytton wildfire is at 
this point undetermined, but it may be due to human causes. 
Fortunately, human-caused fires appear to be declining over 
time in BC (Coogan et al. 2020). Yet, given that extreme fire 
weather has increased over time and that climate change is 
expected to lead to more dangerous fire seasons, and given the 
increasing development in the wildland–human interface, 
instances such as this may become more common. Thus, 
further reducing the amount of preventable human-caused 
wildfires is important given that climate change may lead to 
an increased occurrence of lightning-caused fires and further 
increase the negative impacts of human-caused wildfires on 
ecosystems and communities, including smoke, which can be 
transported across large distances. 

The prevalence of human-caused wildfires near popula-
tion centres and in interface areas is not just a Canadian 
phenomenon, but has been observed all over the world. 
However, the relationship between human population 
density and wildland fire is complex, and has been shown 
to be non-linear in many regions across the world because 
population centres can offer both sources of ignition and 
enhanced protection from wildland fire spread owing to 
increased suppression activity (Bistinas et al. 2013; Price 
and Bradstock 2014). In such cases, the incidence of wild-
land fire ignitions increases with population density up to a 
local threshold, then decreases. In our paper, we found that 
population centres of all sizes were associated with individ-
ual clusters, which further supports the notion that the 
relationships between human-caused wildfires and popula-
tion density are non-linear and involve other factors. 

In our study, the larger lightning-ignition clusters were 
found more or less in the areas where the highest lightning 
activity has been identified for the province by Burrows and 
Kochtubajda (2010), with the exception of the Vancouver 
Island cluster. The main lightning-fire clusters in BC were 
located in the central and southern half of the province, 
associated with the Montane Cordillera ecozone, which is 
among the most diverse ecozones in the country. The 
lightning-fire cluster in northeast BC approximately overlaps 
the Taiga Plains ecozone, which extends down from the 
Northwest Territories. These clusters were separated by the 
Boreal Plains ecozone, possibly owing to there being more 
deciduous fuel in this area: coniferous fuels are associated 
with more frequent lightning ignitions in this ecozone com-
pared with deciduous fuels like aspen (Populus spp.;  
Krawchuk et al. 2006). In fact, the fuels raster we used showed 
a greater abundance of aspen fuels in the Boreal Plains eco-
zone compared with the Taiga Plains and Montane Cordillera 
(Supplementary Material S1, Supplementary Fig. S4), and the 
points associated with the Taiga Plains cluster tended to be 
found more in conifer compared with mixedwood fuels 
(Supplementary Material S1, Supplementary Fig. S27). 

Interestingly, we also identified a lightning-ignition clus-
ter on the north of Vancouver Island in BC. Recent research 
completed on Vancouver Island concerning climate change 
adaptations and planning has highlighted drought as a main 
concern for locals. Local managers and residents of the 
island have been experiencing hotter and drier summers, 
which have led to drought conditions and increased wildfire 
activity from human- and lightning-caused fires in recent 
years (Bonnett 2020). We should mention that we did pre-
liminary analysis of lightning clusters in BC for an earlier 
time period (1990–2004), and although we found similar 
clusters for the Montane Cordillera and Taiga Plains eco-
zones, the Vancouver Island cluster was not present. We 
suggest that this should be examined further to evaluate 
whether lightning has increased in the area over time, as 
regional drought has likely had the effect of lowering fuel 
moisture and increasing its receptivity to ignition. If such is 
the case, the Vancouver Island cluster may indicate a change 
in the local fire regime that may persist and grow larger in 
the future, which is why we raise this point. 

Some of the more localised lightning-ignition clusters we 
identified using a lower hyperparameter setting seemed to be 
associated with roads. Previous research has shown an 
increased frequency of lightning fire with road density, pos-
sibly due to a higher proportion of flammable fuels along 
roadsides compared with forested areas (Arienti et al. 2009), 
which may help to explain this pattern. Some population 
centres also were within localised lighting fire clusters as 
well as human-caused fire clusters (e.g. Kamloops), which 
may highlight communities that area especially at risk from 
wildfire. One consideration is that the cause of wildfires may 
be misclassified, with human-caused fires attributed to light-
ning, which may have artificially elevated the number of 
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lightning-caused fires near population centres and roads. 
Misclassification of wildfires maybe simply be due to 
human error; however, in some instances it may be due to 
the fact that it is easier to classify a fire as lightning-caused 
because it requires less effort (e.g. paperwork) than for 
human-caused fires. 

Research has shown that spatial patterns in lightning- 
caused fires are related to lightning activity as well as vari-
ous other factors (Wotton and Martell 2005). For example, 
lightning activity is highly influenced by proximity to cold 
water bodies, elevation and elevated terrain features (Orville 
et al. 2002; Burrows and Kochtubajda 2010). Furthermore, 
the type, amount, structure, continuity and moisture content 
of fuels are critical factors in the occurrence and spread of 
lightning-caused wildland fires (Wotton et al. 2003; Flannigan 
et al. 2016). Lightning-caused fires in the central Cordillera of 
western Canada, for instance, have been associated predomi-
nantly with coniferous forests (Wierzchowski et al. 2002). 

Likewise, we found that both lightning- and human- 
caused ignitions in BC were mostly found in coniferous 
fuel types (Table 2), which make up the majority of fuels 
in the province (Supplementary Material S1, Supplementary 
Fig. S4). However, there were no human- or lightning- 
ignition cluster points found in the C3 fuels, which are 
primarily found in the northwestern part of the province. 
Another important point is that human-caused ignition 
points in clusters occurred in higher proportions in decidu-
ous and mixed-wood fuel types than lightning-caused fires, 
which suggests that humans are an important factor in ignit-
ing fuels in these less flammable fuel types. Human-caused 
ignition points also occurred in higher proportions in the less 
represented C7 fuel type (Douglas fir and ponderosa pine), 
which is found in a part of the province with a fairly high 
level of human activity, including the Okanagan Valley, 
Kamloops and Merritt clusters. Lightning-ignition cluster 
points were also found in the highest proportions in the C5 
and C2 fuel types. Similarly, the highest proportions of non- 
cluster lightning-fire points were found in C2, followed by C5 
fuels. Human-caused ignition cluster points also differed from 
non-cluster points in that they were more often found in 
higher proportions in the D1 and M1 fuel types, which are 
primarily found the northeast part of the province where the 
Fort St John cluster was located (Supplementary Material S1, 
Supplementary Fig. S26). Non-cluster human-ignition points 
were found in very low proportions in the D1 and Boreal 
deciduous and conifer mixedwood with 50% conifer or more 
(M1) fuel types, which suggests that they are occurring primar-
ily in the fairly concentrated area indicated in our clustering. 

There are a number of factors that may have influenced 
our wildfire clustering results. Ecologically, larger fire 
events have the potential to influence cluster statistics, 
especially when considering number of fires, as it takes 
time for a forested area to regrow vegetation to be available 
to burn. This time-lag could account for a lack of fire activity 
in an area over a shorter time-period (Parks et al. 2018). 

Small fires may also be under-reported (Bridge et al. 2005;  
Hanes et al. 2019) including fire events that occurred in 
previously burned areas or in unburned islands within a 
larger burn. Policies and recording practices may also differ 
over time, and data quality can sometime be an issue. For 
example, two lightning-caused fire data points in our analy-
sis fell outside provincial boundaries within the province of 
Alberta (Fig. 4). Furthermore, agency practices regarding 
documenting mutual aid fires near or within city or town 
limits are situation-dependent; such human-caused fires may 
not be recorded because they fall within town limits and are 
therefore not in designated forested management areas and 
are left out of the dataset. Furthermore, our exclusion of 
Parks Canada data may influence clustering patterns. 

It is also important to note that our clustering study is 
primarily concerned with identifying regional clustering that 
offers visually apparent identification of spatial patterns and 
regions of possible interest for wildfire managers, researchers 
and other stakeholders. This work thus opens the door for 
future research aimed at understanding the drivers behind 
such clusters. Fortunately, previous research has examined 
some of the driving factors behind both lightning- and 
human-caused fires (as cited herein). For example, fuel mois-
ture has been shown to play a critical role in the ignition of 
lightning- and human-caused wildland fires. Fires that occur 
after cloud-to-ground lightning strikes have been related to 
the moisture content of the organic layer of the forest floor, in 
particular, the layer represented by the Duff Moisture Code 
(DMC) in the Canadian Fire Weather Index (FWI) System, 
where fires can smoulder until surface fuels become dry 
enough to sustain surface spread (Wotton et al. 2003). In 
contrast to lightning-caused ignitions, human-caused fires 
have been shown to be more related to the moisture content 
of fine surface fuels, as represented by the Fine Fuel Moisture 
Code (FFMC) in the FWI System (e.g. twigs, needles and other 
cured fine fuels), at the time of contact with an ignition 
agent (e.g. firebrands from campfire embers or cigarettes;  
Cunningham and Martell 1973). Further work using machine 
learning clustering techniques, or other methods, may yield 
further insight into the factors influencing relationships 
between wildland fire, lightning and people. Further investi-
gation is especially important because climate change is likely 
to lead to increasing fire weather extremes and increase the 
impact of wildland fire on the Canadian landscape. This may 
be especially important for the province of BC, which con-
tinues to experience noteworthy environmental challenges 
that may be exacerbated owing to climate change effects. 

Conclusions 

Here, we used the unsupervised machine learning algorithm 
HDBSCAN to characterise and compare high-density geo-
graphic clustering of human- and lightning-caused ignitions 
in western Canada. This method provided a robust and 
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visually powerful approach for identifying areas in which 
both human- and lightning-caused wildfires occur in the 
highest densities and thus may be of benefit for wildfire 
management planning. Consistent with the literature, high- 
density clusters of human-caused ignitions were associated 
with areas of human activity such as roads and population 
centres. High-density clusters of lightning-caused ignitions 
also appeared to be associated with previously identified 
patterns of lightning activity. Clusters of human- and 
lightning-caused ignitions often overlapped, suggesting that 
these areas may be of special concern. 

In the future, there are likely to be more wildland fires in 
Canada owing to climate change (Flannigan et al. 2009;  
Wang et al. 2015). Lightning is expected to increase with 
climate change (Romps et al. 2014), including in the Arctic 
(Chen et al. 2021). Thus, spatial lightning patterns will likely 
change in the future, as they have in the past. Furthermore, 
future climatically driven increases in precipitation in some 
regions may not be enough to offset the effect of increased in 
temperature on fuel moisture, thereby leading to fuels that 
are more receptive to ignition (Flannigan et al. 2016). There 
will also likely be more interface areas in the future (Theobald 
and Romme 2007). Therefore, the above-mentioned factors, 
in combination with the future challenges that are expected 
for fire management and suppression (Podur and Wotton 
2010), make it likely that there will be more wildland fire 
in Canada in the future, including an increase in destructive 
interface fire events. Machine learning and other analytical 
approaches are likely to play an increasing role in the man-
agement of wildland fire in Canada, as fire regimes continue 
to change and wildland fire is likely to continue to become 
increasingly challenging to manage. 

Supplementary material 

Supplementary material is available online. 
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