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Abstract

Forests are currently a substantial carbon sink globally. Many climate change 

mitigation strategies leverage forest preservation and expansion, but rely on forests 

storing carbon for decades to centuries. Yet climate- driven disturbances pose 

critical risks to the long- term stability of forest carbon. We quantify the climate 

drivers that influence wildfire and climate stress- driven tree mortality, including a 

separate insect- driven tree mortality, for the contiguous United States for current 

(1984– 2018) and project these future disturbance risks over the 21st century. We 

find that current risks are widespread and projected to increase across different 

emissions scenarios by a factor of >4 for fire and >1.3 for climate- stress mortality. 

These forest disturbance risks highlight pervasive climate- sensitive disturbance 

impacts on US forests and raise questions about the risk management approach 

taken by forest carbon offset policies. Our results provide US- wide risk maps of key 

climate- sensitive disturbances for improving carbon cycle modeling, conservation 

and climate policy.

K E Y W O R D S
biotic agents, carbon cycle, disturbance, drought, nature- based climate solutions

INTRODUCTION

Earth's forests play a fundamental role in the global car-
bon (C) cycle and currently are a substantial carbon sink, 

sequestering up to 25% of human carbon dioxide emis-
sions annually (Bonan, 2008; Pan et al., 2011). Yet the 
future of forests in a rapidly changing climate is highly 
uncertain (Brodribb et al., 2020; Friedlingstein et al., 
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2014). In particular, increasing climate stresses and dis-
turbance could compromise forest C storage, yielding 
manifold impacts on biodiversity, ecosystem services 
and carbon cycle feedbacks and undermining the poten-
tial of forests as a climate solution (Holland et al., 2019; 
Hurteau et al., 2009; Seidl et al., 2017). For example, an 
unprecedented and climate- fuelled bark beetle outbreak 
in Canada drove immense swaths of tree mortality and 
reversed an entire region of boreal forest from a C sink to 
a C source over a decade with large implications for cli-
mate policy (Kurz, Dymond, et al., 2008; Kurz, Stinson, 
et al., 2008). In addition to insect outbreaks, wildfires 
and climate stress have been widely documented as 
prominent risks because they strongly regulate forest C 
stocks and are likely to increase in future climates (Bentz 
et al., 2010; Buotte et al., 2019; Hicke et al., 2012; Wang 
et al., 2021). Thus, it is essential to rigorously quantify 
and understand drivers of historical risks and use this 
understanding to project future climate- driven risks for 
forest ecosystem functions and services, including long- 
term C storage (Anderegg et al., 2020; Clark et al., 2016).

Due to forests’ role as a C sink and important 
co- benefits for biodiversity and ecosystem services, 
governments, corporations and non- governmental or-
ganisations have shown widespread and growing interest 
in leveraging forests as ‘nature- based climate solutions’ 
to sequester and store C as part of meeting climate pol-
icy goals (Cook- Patton et al., 2020; Griscom et al., 2017; 
Roe et al., 2019). Yet significant scientific gaps remain 
that greatly limit the effective use of forest- based climate 
solutions in an evidence- based climate policy frame-
work. Crucially, to be used for climate mitigation, forests 
must achieve some level of ‘permanence’ whereby a man-
agement or policy action leads to more ecosystem C stor-
age, averaged over time, compared to a rigorous baseline 
(Hurteau et al., 2009; Ruseva et al., 2017). Although fos-
sil C emissions persist in the atmosphere for hundreds to 
thousands of years (Archer et al., 2009), many public and 
private carbon markets only require increased forest C 
storage to last at most for up to 100 years (Ruseva et al., 
2017) —  and sometimes only up to a few decades.

Rigorous forest climate risk assessment is crucial 
for understanding climate impacts on ecosystems and 
biodiversity, informing conservation and management 
prioritisation, and guiding climate policies and pro-
grammes relying on forest carbon uptake and storage. 
Continental- scale risk assessment is currently lacking 
and urgently needed (Anderegg et al., 2020; Buotte et al., 
2019; Lecina- Diaz et al., 2021). Spatial quantification of 
risks can inform forest protocols in climate policy by 
ensuring that climate risks are adequately considered in 
programme design —  for example, through the construc-
tion of ‘buffer pools’ and other insurance mechanisms 
—  and can inform forest project development and con-
servation (Hurteau et al., 2013). However, current forest 
offset protocols tend to include fixed, spatially invariant 
risks that do not incorporate future climate impacts and 

likely underestimate the integrated risks to forests over 
long time scales (e.g. the 100  year horizon used by the 
Climate Action Reserve (Anderegg et al., 2020)).

In this paper, we combine forest inventory data across 
United States (US) forests, remote- sensing data of wild-
fires, high resolution climate data and downscaled cli-
mate model projections to assess climate- sensitive risks 
for forest C stocks in the US. We first quantify how forest 
structure and climate anomalies mediate major climate- 
related risks to US forests from wildfire and non- fire, 
climate stress- mediated tree mortality (defined here as 
tree mortality that is sensitive to climate, excluding fire- 
driven mortality). We then model the spatial patterns 
and magnitudes of these risks over the historical record. 
Finally, we use downscaled future climate data to project 
how these risks might evolve in the future due to climate 
change, revealing where forests are likely to be the most 
vulnerable in the 21st century.

M ETHODS

Overview and climate data

We constructed statistical models of climate risks from 
fire, (non- fire) climate stress- driven tree mortality, and 
insect- driven tree mortality using high- resolution his-
torical climate data, satellite data for fire burn area 
and forest inventory plot data for tree mortality. We 
performed extensive cross- validation and comparisons 
against independent datasets over the historical period. 
We then developed a high- resolution downscaled climate 
dataset from six climate models to project these climate 
risks across the US for three future climate scenarios. 
Statistical risk models and validation are described 
below, and full input dataset details, pre- processing, and 
climate downscaling are described in the Supplementary 
Information (SI) Methods.

Risk models

Fire

We developed a statistical model to create gridded (4- km 
spatial resolution), monthly predictions of burn area as 
a function of climatic variables. This model built on pre-
vious fire risk estimation efforts (Barbero et al., 2014). 
Many of the methods are similar, although updated with 
more recent data (through 2018 rather than 2010).

The model was fit to historical fire data from the 
Monitoring Trends in Burn Severity (MTBS) database 
(SI Methods), which comprises 30- m annual rasters of 
burn severity as well as burn area boundary polygons 
for individual fires (Eidenshink et al., 2007). The dataset 
covers fires from 1984– 2018 and includes fires larger than 
202  ha (404  ha in the Western US) for the continental 
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US. As predictors, we considered both temporally- 
varying climatic variables as well as time- invariant veg-
etation variables. Our primary climatic variables were 
monthly temperature, precipitation and climatic water 
deficit (CWD) derived from the TerraClimate dataset 
(SI Methods) for the historical period. For vegetation, 
we used the National Forest Type Dataset. The forest 
groups ranged in area between 51k to 67 M ha with the 
smallest eight groups each representing <~2  M ha. To 
limit the number of variables and prevent overfitting, 
spatially sparse forest groups were aggregated into su-
persets by combining the smallest forest groups with 
the most spatially similar, larger forest group (we chose 
an area threshold of 1.76 M ha). This consolidation de-
creased the number of forest groups from 25 to 17 and 
had little effect on model behavior. We converted these 
forest group maps into 17 binary, gridded maps, each of 
which became a predictor in the model. Every pixel was 
assigned to one forest group.

We fit a ‘hurdle’ regression model to predict burn area 
as a function of climate and vegetation variables. This 
model jointly predicts the probability of a non- zero value 
and, if a non- zero value is present, its continuous value 
(Cragg, 1971). Intuitively, this model can be thought of as 
combining a classifier (‘was there fire?’) and a regression 
(‘if there was fire, how large was the burn area?’). For 
computational reasons, all datasets were aggregated to 
a 16  km2  grid for fitting. The model was then applied 
to create predictions on the 4- km grid.  We formally 
represented the hurdle model using a sequence of two 
generalised linear models: a Binomial model with logit 
link function predicting zero versus non- zero values, 
and a linear Gaussian model with normal link function 
predicting burn area in the locations where it was non- 
zero. We implemented the hurdle model in Python using 
scikit- learn by combining the LogisticRegression and 
LinearRegression methods (Pedregosa et al., 2012).

In addition to the variables described above, we in-
cluded two additional predictors to better capture 
inter- annual trends. To create these predictors we first 
calculated two timeseries representing a conterminous 
US- average monthly temperature and precipitation and 
then calculated a 12- month rolling maximum of each of 
the two timeseries. Conceptually, these two predictors 
provide a measure of longer- term drought stress when 
conterminous US- wide high temperatures and sharp 
precipitation regimes occur simultaneously. In practice, 
including these extra predictors improved overall model 
performance only slightly, but allowed the model to bet-
ter reproduce both monthly trends, interannual vari-
ability, and the observed increase in burn area over the 
observation period (see Figures S10 and S11).

For the full model, we assessed accuracy using area- 
under- the- ROC- curve (AUC) from the output of the 
logistic regression portion of the hurdle model. We con-
sider this AUC the primary metric of interest given the 
sparse and nearly binary nature of the training data. 

We report these AUC values obtained using split- halves 
cross- validation, where the held out set was constructed 
by sampling years independently (Figure S1). We also as-
sessed performance through the model's ability to repro-
duce three patterns: annual, seasonal and spatial. For 
annual and seasonal trends, we computed an R2 between 
the value computed directly from the data and the mod-
el's prediction allowing for a constant offset difference 
(Figure S1). For the spatial trends we computed an AUC 
just as we did for the full model, except for first averag-
ing over time, which we consider the appropriate metric 
given the sparse nature of the data. While these are not 
the metrics on which the model is trained, they provide 
an indication of how well the model captures important 
and observable patterns in the data. For visualisation 
purposes, predicted monthly burn areas from the model 
(fraction/month) were summed across months to esti-
mate predicted burn area for each year (fraction/year).

Climate stress-  and insects- driven 
tree mortality

We constructed ‘climate stress’ and ‘insect’ tree mortal-
ity models using data from the US Forest Inventory and 
Analysis (FIA) dataset, which is a nationwide standard-
ised network of >100,000  long- term forest monitoring 
plots that track growth, mortality and overall health of 
US forests. We used FIA data from 2000 to 2018. We ag-
gregated FIA forest plot data on live and dead basal area 
from a tree- level to a ‘condition’ level, grouping together 
conditions representing repeated inventories of the same 
location. To construct climate stress and insect risk mod-
els, we screened for plots that had at least 2 or more in-
ventory measurements, which enables the estimation of 
a true mortality rate. We next screened out plots that had 
a ‘fire’ or ‘human’ disturbance code or a ‘cutting’ treat-
ment code to remove major confounding disturbances.

We estimated the fraction of mortality based on 
the concept of a census interval, which we define as a 
pair of measurements in two measurement years (t₀, 
t₁). The fraction of mortality is defined as the ratio of 
new dead basal area in t₁ to the total live basal area in 
t₀, which was then normalised by the census length to 
give annual mortality rates. We computed this ratio 
separately for each condition. Given that many FIA 
plots only had one repeated measure (only one census 
interval), we used the first census interval for all condi-
tions. We modelled ‘climate stress- driven’ mortality as 
the mortality that occurred during this census interval 
(with other confounding mortality drivers excluded, see 
above) and ‘insect- driven’ mortality using the ‘agent 
code’ (AGENTCD) tree- level data, where codes of 10– 
19 indicate insects as the primary causal agent of death. 
We note that the climate stress mortality models include 
mortality from insects, which was a deliberate decision 
because insects and climate stress such as drought often 
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co- occur and interact to kill trees in many forests across 
the US and thus cannot be clearly separated (Anderegg 
et al., 2015), although we performed a sensitivity analy-
sis of the climate stress model when excluding mortality 
of trees with insect agent codes and observed very sim-
ilar modelled mortality patterns (R2 = 0.60, p < 0.0001). 
Drought and other climate stress- driven mortality does 
not have a clear or widely used agent code in the FIA 
database; instead, climate/drought- driven mortality 
is often attributed to a wide array of more proximate 
agents (including insects, disease, weather and other/
unknown); see Anderegg et al. (2015) for a detailed dis-
cussion. Thus, our attribution is that this mortality is 
likely driven by “climate stress” broadly defined, as we 
have aimed to remove other major drivers of mortality, 
notably fire, human disturbance and account for stand 
and self- thinning dynamics in model construction (see 
below). This mortality attribution approach has un-
certainties but is generally reasonable and is the stan-
dard approach that has been widely used in numerous 
climate- related FIA studies (Hember et al., 2017; Shaw 
et al., 2005; Stanke et al., 2021).

We fit a statistical model predicting mortality as a func-
tion of climatic and stand variables. We formally repre-
sented the hurdle model using a sequence of two generalised 
linear models: a Binomial model with logit link function 
predicting zero versus non- zero values, and a linear model 
with beta- distributed link function, which is used for mod-
eling proportions where values are between zero and one, 
for predicting mortality in the conditions where it was non- 
zero. The beta- distributed link function for the linear re-
gression was chosen based on inspecting the behavior of the 
raw data distributions. We implemented the hurdle model 
in R using the glm function in the default ‘stats’ package 
and the ‘betareg’ package (Zeileis et al., 2010).

For each condition, we extracted the mean, minimum 
and maximum over the census interval for six annual 
climate variables that were selected based on their im-
portance in the drought and insect mortality literature: 
precipitation, temperature, Palmer Drought Severity 
Index (PDSI), potential evapotranspiration (PET), cli-
matic water deficit (CWD) and vapor pressure deficit 
(VPD) (Bentz et al., 2010; Creeden et al., 2014; Williams 
et al., 2013). We also extracted the stand age for each con-
dition from FIA and the community- weighted mean and 
range of the functional trait of the water potential at 50% 
loss of hydraulic conductivity (P50) from maps published 
in a recent study (Trugman et al., 2020) scaled to 0.25 de-
gree. P50 has been widely linked to drought- driven mor-
tality risk in site- level (Nardini et al., 2013) studies and 
meta- analyses (Anderegg et al., 2016). We also included 
in the mortality models two stand variables, age or age- 
squared, to account for background ecological dynamics 
such as self- thinning and background mortality, follow-
ing Hember et al. (2017). All predictor variables were z- 
scored across the full dataset for that variable to ensure 
that variable ranges did not drive model outputs.

Climate stress and insect mortality models were fit in-
dependently to each FIA ‘forest type,’ which was chosen 
as an intermediate compromise of capturing the diver-
sity of responses across US forests but aggregating above 
a species- level to enable adequate estimation of mortal-
ity levels. To ensure that each forest type had 50 or more 
condition measurements, we aggregated some sparse for-
est types into more common ones (59 were so aggregated 
out of the initial set of 171), leading to 112 initial forest 
types in our dataset. We aggregated condition- level mor-
tality rates, age, climate data and functional traits to a 
0.25 degree grid for each forest type. This grid size was 
chosen through sensitivity analyses to determine the op-
timal aggregation where the coefficient of variation of 
mortality rate stabilised but large- scale climate variation 
was preserved. All climate stress and insect mortality 
models were fit using this 0.25 degree gridded data for 
each forest type.

We considered collinearity among predictor variables 
by examining variance inflation factors. We found that 
variance inflation factors were too high for comparing 
mean/min/max of the same variable (e.g. mean vs. min 
vs. max annual temperature), but were generally within 
acceptable levels (<5) across the six predictor climate 
variables, stand age and P50  hydraulic trait. Thus, we 
conducted a stratified model selection analysis where we 
fit all possible model combinations with one of each pre-
dictor variable (i.e. varying all possible combinations of 
mean vs min vs. max of each climate variable, age vs. age- 
squared, P50 mean vs. P50 range) and selected the most 
parsimonious model via Akaike Information Criterion 
(Burnham & Anderson, 2004). For all analyses in this 
paper, we fit the same predictor variables across all for-
est types to reduce complexity. Thus, individual forest 
types were not allowed to have separate predictor vari-
ables. Model selection analyses were done separately on 
climate stress and insect mortality dependent variables.

We examined optimal model complexity by compar-
ing the AIC and R2 of nested sets of models. We com-
pared climate stress and insect mortality models as a 
function of: (i) a null model of forest type- only (i.e. each 
forest type would receive only its mean mortality), (ii) a 
null model of mortality as a function of forest type and 
age only (i.e. no climate predictors), (iii) mortality as a 
function of forest type, age and climate predictors, and 
(iv) mortality as a function of forest type, age, climate 
and functional traits. We observed that climate variables 
significantly improved (i.e. deltaic << −3) model perfor-
mance beyond both null models for both climate stress 
and insects and that the range of P50  significantly im-
proved climate stress mortality models, but not insect 
models.

We assessed model performance with cross- validation 
and used two primary metrics that reflect the perfor-
mance of different parts of the hurdle model. We first 
tested for spatial autocorrelation using Moran's I for 
each forest type and each of the climate stress and insect 
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mortality models. For forest types and mortality mod-
els where significant autocorrelation was detected, we 
used a comparison of Moran's I by distance bin, using 
the ‘correlog’ function in the pgirmess package in R 
(Giraudoux et al., 2018), to determine the autocorrela-
tion length. We set the spatial autocorrelation length as 
the midpoint between the last significant bin and the first 
non- significant bin. We then conducted spatial hold- out 
cross- validation (Ploton et al., 2020) for each forest type 
and mortality model, whereby one grid cell was held out 
from model training and a spatial buffer around that 
grid cell equal to the autocorrelation length was also 
removed from model training. The model was then fit 
on the remaining data and used to predict the hold- out 
grid cell, and this was repeated 1000- fold for each forest 
type and mortality model. Similar to the fire model, we 
examined model performance using cross- validated area 
under the receiver operating curve (AUC) for the binary 
component of the hurdle model. We also considered the 
non- zero- value R2 for the beta- regression part of the 
hurdle model (Figure S5), aggregating as above.

Finally, we imposed one further set of criteria on cli-
mate stress and insect models to incorporate climate- 
dependence only where justified based on model 
performance. For all final model- based analyses (i.e. 
Figures 1d, f, 2– 4), we identified forest types where 
cross- validated AUC was greater than 0.6 and the forest 
type had >20  grid cells with mortality observed in the 
historical record, based on a recent analysis of stability 
and information criteria in regression models (Jenkins & 
Quintana- Ascencio, 2020). This led to risks being mod-
elled with climate variables and projected for 30 forest 
types in the insect models and 61 forest types in the cli-
mate stress models out of 112 possible forest types. For 
all forest types that did not meet these criteria, we pro-
jected mortality simply as the mean of historical mortal-
ity for that forest type, and thus set all future mortality 
to that value. We note that this is a very conservative de-
cision and is likely to underestimate future risks.

We further performed two evaluations of our mortal-
ity models against independent metrics or datasets. For 
the climate stress mortality models, we compared our 
observed mortality rates by species against the recent 
‘Forest Stability Index’ for eight major western US forest 
species (Stanke et al., 2020) and observed a strong rela-
tionship (R2 = 0.72; Figure S2). For the insect mortality 
models, we compared our observed and modelled spatial 
patterns to an independent dataset of Aerial Detection 
Surveys (ADS) done by the US Forest Service to map 
bark beetle- driven mortality across the US (Williams 
et al., 2016). Despite large differences in types of data-
set (e.g. aerial versus plot; ‘bark beetle- driven’ mortal-
ity versus ‘insect- driven’ plot agent codes) and spatial 
scales, we found strong agreement between our models 
and that independent dataset (AUC = 0.79 and R2 = 0.29 
comparing our modelled mortality and ADS observed 
mortality; Figure S3).

For future CMIP6 projection- driven risk models, we 
used the same climate variables as chosen by the final 
model selection analysis and projected climate stress and 
insect risk (i.e. % basal area killed per year) over each de-
cade from 1950– 2100 in different climate models and sce-
narios. Future decadal climate variables were z- scored 
against three decadal baselines (1990– 1999; 2000– 2009; 
2010– 2019) and the ensemble mean was taken across 
these baselines for each climate model and decade. All 
modelled and projection maps (e.g. Figures 1d/f, 3) were 
made on all conditions in FIA, regardless of number of 
censuses in the historical record, to cover all US forests, 
aggregated to 0.25° by forest type, and then aggregated 
across forest types as described above. For future projec-
tions, we used a constant stand age and P50 functional 
trait based on the 2000– 2018  historical values due to 
uncertainties about future forest dynamics and compo-
sition. This is an assumption and uncertainty, but a full 
exploration of stand age dynamics, species distribution 
and composition shifts, and demography is beyond the 
scope of this current analysis.

RESU LTS

The fire risk model reliably predicted historical fires 
(cross- validated AUC: 0.89), capturing interannual vari-
ability (cross- validated R2: 0.64), seasonal patterns (e.g. 
spring risk in the southeastern US and fall risk in the 
western US; cross- validated R2: 0.90), and spatial pat-
terns (cross- validated AUC: 0.78) (Figure 1a- b; Figure 
S1). The model captured the spatial patterns of more 
prevalent fire across the western US, in particular in 
California and the northern Rocky Mountains.

Historical patterns of climate stress- driven tree 
mortality, which is predominantly drought stress and 
includes biotic agents/insects, were highest across the 
western US and intermountain West, which was captured 
in the mortality model (cross- validated spatial R2: 0.18; 
Figure 1c– d). These patterns were consistent with the 
independent comparison dataset (Figure S2) and other 
recent studies (31). The inclusion of forest physiological 
metrics for drought tolerance, specifically community- 
weighted plant hydraulic traits, substantially improved 
the predictive accuracy of the climate stress mortality 
models (ΔAkaike Information Criterion  <<  −10), con-
sistent with drought- physiology studies (Anderegg et al., 
2016). Observed historical permanence risks to US for-
ests from insect- driven mortality specifically were high-
est in the Rocky Mountains and modelled risks captured 
the key broad spatial patterns in risks (cross- validated 
spatial R2: 0.31; Figure 1e– f). These observed and mod-
elled insect risks showed strong spatial agreement with 
an independent continent- wide insect outbreak dataset 
(Figure S3).

Under all future shared socioeconomic pathway (SSP) 
climate scenarios, fire risks are projected to increase 
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substantially throughout the 21st century (Figure 2a). 
Future risks increase similarly across scenarios through 
mid- century, but diverge by 2050. By 2080– 2099, the 
multi- model mean projects 4- fold (SSP2- 4.5), 9- fold 
(SSP3- 7.0), and 14- fold increases (SSP5- 8.5) in US- 
averaged fire risk compared to historical (average 1990– 
2019) values. Projected climate stress risks increased 
substantially and varied by emissions scenario with 

average mortality increases by a factor of 1.3 in SSP2- 
4.5, 1.5 in SSP3- 7.0, and 1.8 in SSP5- 8.5 by 2080– 2099 
(Figure 2b). Future US- wide insect risk projections indi-
cated increases of 1.2- fold in SSP2- 4.5, 1.4- fold in SSP3- 
7.0, and 1.7- fold in SSP5- 8.5 by 2080– 2099 (Figure 2c). We 
note that the climate stress and insect mortality models 
are not independent and thus should not be considered 
additive. All three climate- sensitive risks showed large 

F I G U R E  1  Observed (left) and statistically modelled historical (right) risk maps for fire (a&b), non- fire, climate stress- driven tree mortality 
(c&d), and insect- driven tree mortality (E&F) reveal widespread and spatially varying risks. Fire risk is modelled as burn area by wildfires, that 
is, fraction of a grid cell burned per year. Climate- stress and insect- driven tree mortality risk are modelled as basal area mortality per year. For 
each impact risk model (b, d, f), anywhere shaded is considered forested. The forest mask for fire differs slightly from those used for climate 
stress and insects due to different input data. Data gaps in forest inventory in WY and OK preclude observed risk estimates in climate stress 
and insect cases (c, e)
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differences across climate models, although the relative 
ranking of risk by SSP was consistent by the end of the 
century. The substantial differences between high and 
low emissions SSPs emphasises the critical importance 
of climate policy to mitigate climate risks to US forests.

We then conducted a risk assessment to quantify 
which regions and forests are likely to experience the 
highest risks in the 21st century (Figure 3, average of 
2080– 2099). By the end of the 21st century, high levels of 
fire risk, which were historically confined to pockets in 
California and the intermountain western US, are pro-
jected to expand across the entire western US (Figure 4). 

While these risks are substantially mitigated by emis-
sions reductions (SSP2- 4.5, Figure 3a), risks are still pro-
jected to increase dramatically in regions like the Great 
Plains in the central US and southeastern US (Figure 4).

Future climate stress risks increased most across 
broad swaths of the intermountain and southwestern 
US, California, and western Texas, although parts of the 
eastern US and the upper midwestern US also exhibited 
increased climate stress mortality risk (Figures 3b, 4). 
Projected insect risk to forest permanence was highest 
across the Rocky Mountains in the intermountain west-
ern US, Sierra Nevada mountains in California, and 
parts of the northern Midwest (Figures 3c, 4). Climate 
stress and insect mortality model projections were only 
made for forest types where models showed skillful cross- 
validated performance (i.e. AUC >  0.6) and thus lower 
risk in some regions (e.g. southern pine beetle risk in the 
southeastern US (Weed et al., 2013)) may reflect data and 
model limitations rather than inherently lower risks.

DISCUSSION

Our results provide a synthesis of fire- , climate stress-  and 
insect- driven climate risks to forests in an open- source 
dataset available at continental scales. Climate- sensitive 
risks to US forests have major impacts on forest C cycling 
and climate change feedbacks, and thus quantifying for-
est permanence risks is important for conservation and 
climate policy efforts. Tree mortality and disturbance 
are large uncertainties in current land surface and veg-
etation models (Bugmann et al., 2019; Fisher et al., 2018; 
Pugh et al., 2019) and better large- scale historical data-
sets are needed for benchmarking and improving these 
models. Thus, the disturbance risk and mortality maps 
and their climate sensitivities derived here can help ad-
vance C cycle models. Our results reveal that US forests 
are very likely to experience increasing risks from cli-
mate change that undermine their C sequestration po-
tential, an important factor that should be considered in 
climate change mitigation policy.

The spatial patterns in our risk models —  both his-
torical and future risks —  broadly agree with other sim-
ilar efforts of individual disturbances in the literature, 
such as the burn area patterns of large fires (e.g. Barbero 
et al., 2014) or drought risks (Buotte et al., 2019). The spa-
tial patterns of insect model projections are consistent 
with previous projections for several major insect species 
(Bentz et al., 2010) and overall magnitude is similar to 
coarse- level ecoregion projections in parts of the west-
ern US (McNellis et al., 2021) (Figure 4). Further, the cli-
mate sensitivities of insect mortality for several western 
US pine species with the highest historical insect- driven 
mortality were consistent with estimates in the literature 
(Figure S4) (Bentz et al., 2010; Creeden et al., 2014).

Our statistical modeling approach with static vegeta-
tion for estimating future climate risks to forests due to 

F I G U R E  2  Projected 21st century risks for fire (a), non- fire, 
climate stress- driven tree mortality (b), and insect- driven tree 
mortality (c) averaged across the US. Statistical risk models forced by 
simulations from each different climate model shown as transparent 
lines, coloured according to the three shared socioeconomic pathway 
(SSP) climate scenarios. The multi- model mean for each SSP is 
shown opaque. Statistical model projection driven by historical 
meteorological data (rather than meteorological data derived from 
a climate model) are shown in black. Fire risks are calculated with 
a 10- year centered moving average, while climate stress- related and 
insect- related are presented as decadal averages
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fire, climate stress, and insects is an informative ‘first- 
step’ analysis and complementary approach to current 
process- based methods for several reasons. First, ac-
curately capturing mortality due to fire, climate stress 
and insects is quite challenging and often not included 
in state- of- the- art land surface models used in CMIP6 
projections. Mortality of any type is a major uncer-
tainty in process- based models, and efforts to predict 
drought mortality from first principles are nascent 
and still need substantial work (Bugmann et al., 2019). 
Prognostic insect- driven mortality is completely absent 
in CMIP6  mechanistic models currently (Fisher et al., 
2018). Prognostic fire is present in some CMIP6 models, 
but none are able to capture the extent of current extreme 
fire events (Fisher et al., 2018). The statistical approach 
presented here is rigorously validated against historical 
observations and likely provides an upper bound of the 
extent of future disturbance given the lack of vegetation- 
disturbance feedbacks and dampening factors, further 
discussed among the several important caveats and lim-
itations below. These models and approaches could be 
applied in other regions or countries by leveraging global 

fire data from MODIS and forest loss/disturbance data 
from Landsat, bringing in ground plot networks where 
possible and accounting for direct human land- use 
change.

These climate- sensitive risk maps and projections pro-
vide spatial quantification and uncertainty assessment 
across climate models, climate scenarios, and risk mod-
els that can inform risk management and conservation 
decisions. To support these aims, all data and code un-
derlying these models are publicly available, and can be 
easily accessed and visualised via a web portal (https://
carbo nplan.org/resea rch/fores t- risks). As with any anal-
ysis, these projections are subject to several uncertainties 
and caveats. In addition to uncertainties in underlying 
Earth system models and statistical climate downscaling 
approaches (SI Methods), these projections use empirical 
models based on static forest composition and structure 
over the 1984– 2018 period. Thus, these projections do not 
account for shifts in forest composition or distribution, 
interactions among risks, and carbon dioxide effects on 
plant drought stress. In particular, large- scale impacts 
of fires, drought, or insects could substantially reduce 

F I G U R E  3  Risks for fire, climate stress- driven tree mortality, and insect- driven tree mortality (rows) averaged over the 2080– 2099 period, 
separated by shared socioeconomic pathway (SSP) climate scenario (columns). Note that color- bars are substantially expanded relative to those 
in Figure 1 in order to visualise future projections that exceed historical risks

https://carbonplan.org/research/forest-risks
https://carbonplan.org/research/forest-risks
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biomass, and thus risk, although this is not likely to exert 
a material influence before the 2050s (Abatzoglou et al., 
2021; Barbero et al., 2015). The risk projections also do 
not include impacts of land- use management, considered 
to be a strong potential lever in fire risk (Smith et al., 
2016) and to a lesser degree climate stress and insect 
risks. We note, however, that there are also many reasons 
that these risk projections may be conservative or under-
estimates for insects and climate stress mortality, includ-
ing projections made only for strong historical models, 
frequent non- linear impacts of drought and insects that 
may not be well- characterised in inventory data, and 
novel pests and pathogens.  A comparison of our risk 
projections with mechanistic land surface models with 
prognostic fire from CMIP6 results revealed strong and 
consistent spatial correlations (Figure S7), providing ad-
ditional confidence in the patterns of future risks and 
their impact on forest carbon sequestration.

Our results clearly show both spatial heterogene-
ity and future increases in risk across broad swaths of 
the continental US. While some current forest offset 
protocols incorporate risk, for example through the 
construction of ‘buffer pools’ or related insurance- like 
mechanisms, current risk estimates do not incorporate 

either form of variability (Anderegg et al., 2020). Thus, 
our findings raise serious questions about the integrity 
of these programmes. Further work could incorporate 
observed heterogeneity and future projections to better 
inform the construction of these climate programmes, 
such as by translating these risks into specific C loss esti-
mates that could parameterise a better- grounded buffer 
pool or other insurance programme. Our results provide 
a critical starting point in quantifying risks over space 
and time and can inform management, conservation and 
policy actions. Taken in sum, our results increase the ur-
gency and magnitude of response needed for reducing 
greenhouse gas emissions to mitigate climate change 
given the increasing risks of climate change to nature- 
based climate solutions.

ACK NOW LEDGEM EN TS
The authors thank H Stanke and J Shaw for insights 
and assistance with FIA data analysis and process-
ing. WRLA acknowledges support from the David 
and Lucille Packard Foundation, US National Science 
Foundation grants 1714972, 1802880, 2003017, and 
2044937, and USDA National Institute of Food 
and Agriculture, Agricultural and Food Research 

F I G U R E  4  Regionally averaged time series of forest risks from three impacts: fire (top), non- fire, climate stress- driven tree mortality 
(middle), and insect- driven tree mortality (bottom). Regions of interest shown as gray boxes in the maps at the top of each column. As in Figure 
2, statistical risk model simulations from each climate model simulation are shown as transparent lines, coloured according to the three shared 
socioeconomic pathway (SSP) climate scenarios. The multi- model mean for each SSP is shown opaque. Statistical model projections for each 
region driven by historical meteorological data (rather than meteorological data derived from a climate model) are shown in black. Fire risks 
are calculated with a 10- year centered moving average, while climate stress- related and insect- related are presented as decadal averages



   | 1519ANDEREGG Et Al.

Initiative Competitive Programme, Ecosystem 
Services and Agro- Ecosystem Management, grant 
no. 2018- 67019- 27850. CarbonPlan acknowledges sup-
port from Microsoft AI for Earth. ATT acknowledges 
funding from the NSF Grant 2003205 and 2017494, the 
USDA National Institute of Food and Agriculture, 
Agricultural and Food Research Initiative Competitive 
Programme Grant No. 2018- 67012- 31496 and the 
University of California Laboratory Fees Research 
Program Award No. LFR- 20- 652467. Any errors are 
the authors’ sole responsibility.

AU T HOR CON TR I BU T ION
W.R.L.A., O.S.C., J.F., and J.J.H designed the project. 
W.R.L.A., O.S.C., G.B., A.T.T., J.F., and J.J.H conducted 
the analyses. W.R.L.A. and O.S.C. drafted the initial paper 
and all co- authors provided input on writing and analyses.

PEER R EV I EW
The peer review history for this article is available at 
https://publo ns.com/publo n/10.1111/ele.14018.

DATA AVA I LA BI LI T Y STAT EM EN T
The source code to reproduce our analysis is available in 
https://doi.org/10.5281/zenodo.4741329. Archival versions 
of this project's data products are available in https://doi.
org/10.5281/zenodo.4741333.

ORCI D
William R. L. Anderegg   https://orcid.
org/0000-0001-6551-3331 
Oriana S. Chegwidden   https://orcid.org/0000-0003-1376-3835 
Grayson Badgley   https://orcid.org/0000-0003-1011-4573 
Anna T. Trugman   https://orcid.org/0000-0002-7903-9711 
Danny Cullenward   https://orcid.org/0000-0002-6803-9572 
John T. Abatzoglou   https://orcid.org/0000-0001-7599-9750 
Jeffrey A. Hicke   https://orcid.org/0000-0003-0494-2866 
Jeremy Freeman   https://orcid.org/0000-0001-7077-7972 
Joseph J. Hamman   https://orcid.org/0000-0001-7479-8439 

R E F ER E NC E S
Abatzoglou, J.T., Battisti, D.S., Williams, A.P., Hansen, W.D., 

Harvey, B.J. & Kolden, C.A. (2021) Projected increases in 
western US forest fire despite growing fuel constraints. 
Communications Earth & Environment, 2, 227. https://doi.
org/10.1038/s4324 7- 021- 00299 - 0

Anderegg, W.R., Hicke, J.A., Fisher, R.A., Allen, C.D., Aukema, J., 
Bentz, B. et al. (2015) Tree mortality from drought, insects, and their 
interactions in a changing climate. New Phytologist, 208, 674– 683.

Anderegg, W.R.L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A.F.A., 
Choat, B. et al. (2016) Meta- analysis reveals that hydraulic traits 
explain cross- species patterns of drought- induced tree mor-
tality across the globe. Proceedings of the National Academy of 
Sciences, 113(18), 5024– 5029.

Anderegg, W.R.L., Trugman, A.T., Badgley, G., Anderson, C.M., 
Bartuska, A., Ciais, P. et al. (2020) Climate- driven risks to the 
climate mitigation potential of forests. Science, 368, eaaz7005.

Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, 
U. et al. (2009) Atmospheric lifetime of fossil fuel carbon dioxide. 
Annual Review of Earth and Planetary Sciences, 37, 117– 134.

Barbero, R., Abatzoglou, J.T., Larkin, N.K., Kolden, C.A. & Stocks, 
B. (2015) Climate change presents increased potential for very 
large fires in the contiguous United States. International Journal 
of Wildland Fire, 24, 892– 899.

Barbero, R., Abatzoglou, J.T., Steel, E.A. & Larkin, K.N. (2014) 
Modeling very large- fire occurrences over the continental 
United States from weather and climate forcing. Environmental 
Research Letters, 9, 124009.

Bentz, B.J., Régnière, J., Fettig, C.J., Hansen, E.M., Hayes, J.L., 
Hicke, J.A. et al. (2010) Climate change and bark beetles of the 
Western United States and Canada: direct and indirect effects. 
BioScience, 60, 602– 613.

Bonan, G.B. (2008) Forests and climate change: forcings, feedbacks, 
and the climate benefits of forests. Science, 320, 1444– 1449.

Brodribb, T.J., Powers, J., Cochard, H. & Choat, B. (2020) Hanging by 
a thread? Forests and drought. Science, 368, 261– 266.

Bugmann, H., Seidl, R., Hartig, F., Bohn, F., Brůna, J., Cailleret, M. 
et al. (2019) Tree mortality submodels drive simulated long- term 
forest dynamics: assessing 15 models from the stand to global 
scale. Ecosphere, 10, e02616.

Buotte, P.C., Levis, S., Law, B.E., Hudiburg, T.W., Rupp, D.E. & Kent, 
J.J. (2019) Near- future forest vulnerability to drought and fire var-
ies across the western United States. Global Change Biology, 25, 
290– 303.

Burnham, K.P. & Anderson, D.R. (2004) Multimodel inference under-
standing AIC and BIC in model selection. Sociological Methods 
& Research, 33, 261– 304.

Clark, J.S., Iverson, L., Woodall, C.W., Allen, C.D., Bell, D.M., Bragg, 
D.C. et al. (2016) The impacts of increasing drought on forest dy-
namics, structure, and biodiversity in the United States. Global 
Change Biology, 22(7), 2329– 2352.

Cook- Patton, S.C., Leavitt, S.M., Gibbs, D., Harris, N.L., Lister, K., 
Anderson- Teixeira, K.J. et al. (2020) Mapping carbon accumula-
tion potential from global natural forest regrowth. Nature, 585, 
545– 550.

Cragg, J.G. (1971) Some statistical models for limited dependent 
variables with application to the demand for durable goods. 
Econometrica, 39, 829.

Creeden, E.P., Hicke, J.A. & Buotte, P.C. (2014) Climate, weather, and 
recent mountain pine beetle outbreaks in the western United 
States. Forest Ecology and Management, 312, 239– 251.

Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z.L., Quayle, B. & 
Howard, S. (2007) A project for monitoring trends in burn sever-
ity. Fire ecology, 3(1), 3– 21.

Fisher, R.A., Koven, C.D., Anderegg, W.R.L., Christoffersen, B.O., 
Dietze, M.C., Farrior, C.E. et al. (2018) Vegetation demograph-
ics in Earth system models: a review of progress and priorities. 
Global Change Biology, 24, 35– 54.

Friedlingstein, P., Meinshausen, M., Arora, V.K., Jones, C.D., Anav, 
A., Liddicoat, S.K. et al. (2014) Uncertainties in CMIP5 climate 
projections due to carbon cycle feedbacks. Journal of Climate, 27, 
511– 526.

Giraudoux, P., Giraudoux, M.P. & Mass, S. (2018) Package ‘pgirmess’.
Griscom, B.W., Adams, J., Ellis, P.W., Houghton, R.A., Lomax, G., 

Miteva, D.A. et al. (2017) Natural climate solutions. Proceedings 
of the National Academy of Sciences, 114, 11645– 11650.

Hember, R.A., Kurz, W.A. & Coops, N.C. (2017) Relationships 
between individual- tree mortality and water- balance vari-
ables indicate positive trends in water stress- induced tree 
mortality across North America. Global Change Biology, 23, 
1691– 1710.

Hicke, J.A., Allen, C.D., Desai, A.R., Dietze, M.C., Hall, R.J., (Ted) 
Hogg, E.H. et al. (2012) Effects of biotic disturbances on forest 
carbon cycling in the United States and Canada. Global Change 
Biology, 18, 7– 34.

Holland, T.G., Stewart, W. & Potts, M.D. (2019) Source or Sink? A com-
parison of Landfire- and FIA- based estimates of change in abo-
veground live tree carbon in California’s forests. Environmental 
Research Letters, 14, 074008.

https://publons.com/publon/10.1111/ele.14018
https://doi.org/10.5281/zenodo.4741329
https://doi.org/10.5281/zenodo.4741333
https://doi.org/10.5281/zenodo.4741333
https://orcid.org/0000-0001-6551-3331
https://orcid.org/0000-0001-6551-3331
https://orcid.org/0000-0001-6551-3331
https://orcid.org/0000-0003-1376-3835
https://orcid.org/0000-0003-1376-3835
https://orcid.org/0000-0003-1011-4573
https://orcid.org/0000-0003-1011-4573
https://orcid.org/0000-0002-7903-9711
https://orcid.org/0000-0002-7903-9711
https://orcid.org/0000-0002-6803-9572
https://orcid.org/0000-0002-6803-9572
https://orcid.org/0000-0001-7599-9750
https://orcid.org/0000-0001-7599-9750
https://orcid.org/0000-0003-0494-2866
https://orcid.org/0000-0003-0494-2866
https://orcid.org/0000-0001-7077-7972
https://orcid.org/0000-0001-7077-7972
https://orcid.org/0000-0001-7479-8439
https://orcid.org/0000-0001-7479-8439
https://doi.org/10.1038/s43247-021-00299-0
https://doi.org/10.1038/s43247-021-00299-0


1520 |   FUTURE CLIMATE RISKS FROM STRESS, INSECTS AND FIRE ACROSS US FORESTS 

Hurteau, M.D., Hungate, B.A. & Koch, G.W. (2009) Accounting 
for risk in valuing forest carbon offsets. Carbon Balance and 
Managment, 4, 1.

Hurteau, M.D., Hungate, B.A., Koch, G.W., North, M.P. & Smith, 
G.R. (2013) Aligning ecology and markets in the forest carbon 
cycle. Frontiers in Ecology and the Environment, 11, 37– 42.

Jenkins, D.G. & Quintana- Ascencio, P.F. (2020) A solution to mini-
mum sample size for regressions. PLoS One, 15, e0229345.

Kurz, W.A., Dymond, C.C., Stinson, G., Rampley, G.J., Neilson, E.T., 
Carroll, A.L. et al. (2008) Mountain pine beetle and forest car-
bon feedback to climate change. Nature, 452, 987– 990.

Kurz, W.A., Stinson, G., Rampley, G.J., Dymond, C.C. & Neilson, 
E.T. (2008) Risk of natural disturbances makes future contri-
bution of Canada’s forests to the global carbon cycle highly un-
certain. Proceedings of the National Academy of Sciences, 105, 
1551– 1555.

Lecina- Diaz, J., Martínez- Vilalta, J., Alvarez, A., Banqué, M., 
Birkmann, J., Feldmeyer, D. et al. (2021) Characterizing forest 
vulnerability and risk to climate- change hazards. Frontiers in 
Ecology and the Environment, 19, 126– 133.

McNellis, B.E., Smith, A.M., Hudak, A.T. & Strand, E.K. (2021) Tree 
mortality in western US forests forecasted using forest inventory 
and Random Forest classification. Ecosphere, 12, e03419.

Nardini, A., Battistuzzo, M. & Savi, T. (2013) Shoot desiccation and 
hydraulic failure in temperate woody angiosperms during an ex-
treme summer drought. New Phytologist, 200, 322– 329.

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, 
W.A. et al. (2011) A large and persistent carbon sink in the 
World’s forests. Science, 333, 988– 993.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., 
Grisel, O. et al. (2012) Scikit- learn: machine Learning in Python. 
Journal of Machine Learning Research, 12, 2825– 2830.

Ploton, P., Mortier, F., Réjou- Méchain, M., Barbier, N., Picard, N. 
Rossi, V. et al. (2020) Spatial validation reveals poor predictive 
performance of large- scale ecological mapping models. Nature 
Communications, 11, 4540.

Pugh, T.A., Arneth, A., Kautz, M., Poulter, B. & Smith, B. (2019) 
Important role of forest disturbances in the global biomass turn-
over and carbon sinks. Nature Geoscience, 12, 730– 735.

Roe, S., Streck, C., Obersteiner, M., Frank, S., Griscom, B., Drouet, 
L. et al. (2019) Contribution of the land sector to a 1.5°C world. 
Nature Climate Change, 9, 1– 12.

Ruseva, T., Marland, E., Szymanski, C., Hoyle, J., Marland, G. & 
Kowalczyk, T. (2017) Additionality and permanence standards in 
California’s Forest Offset Protocol: a review of project and pro-
gram level implications. Journal of Environmental Management, 
198, 277– 288.

Seidl, R., Thom, D., Kautz, M., Martin- Benito, D., Peltoniemi, M., 
Vacchiano, G. et al. (2017) Forest disturbances under climate 
change. Nature Climate Change, 7, 395.

Shaw, J.D., Steed, B.E. & DeBlander, L.T. (2005) Forest inventory and 
analysis (FIA) annual inventory answers the question: what is 

happening to pinyon- juniper woodlands? Journal of Forestry -  
Washington, 103, 280– 285.

Smith, A.M.S., Kolden, C.A., Paveglio, T.B., Cochrane, M.A., 
Bowman, D.M.J.S., Moritz, M.A. et al. (2016) The science of 
firescapes: achieving fire- resilient communities. BioScience, 66, 
130– 146.

Stanke, H., Finley, A.O., Domke, G.M., Weed, A.S. & MacFarlane, 
D.W. (2021) Over half of western United States’ most abundant 
tree species in decline. Nature Communications, 12, 1– 11.

Stanke, H., Finley, A.O., Weed, A.S., Walters, B.F. & Domke, G.M. 
(2020) rFIA: an R package for estimation of forest attributes with 
the US Forest Inventory and Analysis database. Environmental 
Modelling and Software, 127, 104664.

Trugman, A.T., Anderegg, L.D., Shaw, J.D. & Anderegg, W.R. (2020) 
Trait velocities reveal that mortality has driven widespread coor-
dinated shifts in forest hydraulic trait composition. Proceedings 
of the National Academy of Sciences, 117, 8532– 8538.

Wang, J.A., Baccini, A., Farina, M., Randerson, J.T. & Friedl, M.A. 
(2021) Disturbance suppresses the aboveground carbon sink in 
North American boreal forests. Nature Climate Change, 11(5), 
435– 441. https://doi.org/10.1038/s4155 8- 021- 01027 - 4

Weed, A.S., Ayres, M.P. & Hicke, J. (2013) Consequences of climate 
change for biotic disturbances in North American forests. 
Ecological Monographs, 83(4), 441– 470.

Williams, A.P., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse, 
C.A., Meko, D.M. et al. (2013) Temperature as a potent driver of 
regional forest drought stress and tree mortality. Nature Climate 
Change, 3, 292– 297.

Williams, C.A., Gu, H., MacLean, R., Masek, J.G. & Collatz, G.J. 
(2016) Disturbance and the carbon balance of US forests: a 
quantitative review of impacts from harvests, fires, insects, and 
droughts. Global and Planetary Change, 143, 66– 80.

Zeileis, A., Cribari- Neto, F., Grün, B. & Kos- midis, I. (2010) Beta re-
gression in R. Journal of Statistical Software, 34, 1– 24.

SU PPORT I NG I N FOR M AT ION
Additional supporting information may be found in the 
online version of the article at the publisher’s website.

How to cite this article: Anderegg, W.R.L., 
Chegwidden, O.S., Badgley, G., Trugman, A.T., 
Cullenward, D., Abatzoglou, J.T., et al. (2022) 
Future climate risks from stress, insects and fire 
across US forests. Ecology Letters, 25, 1510– 1520. 
Available from: https://doi.org/10.1111/ele.14018

https://doi.org/10.1038/s41558-021-01027-4
https://doi.org/10.1111/ele.14018

	Future climate risks from stress, insects and fire across US forests
	Abstract
	INTRODUCTION
	METHODS
	Overview and climate data
	Risk models
	Fire
	Climate stress- and insects-driven tree mortality


	RESULTS
	DISCUSSION
	ACKNOWLEDGEMENTS
	AUTHOR CONTRIBUTION
	PEER REVIEW
	DATA AVAILABILITY STATEMENT

	REFERENCES


