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A B S T R A C T   

Forest disturbances such as wildfires can dramatically alter forest structure and composition, increasing the 
likelihood of ecosystem changes. Up-to-date and accurate measures of post-disturbance forest recovery in 
managed forests are critical, particularly for silvicultural planning. Measuring the live and dead vegetation post- 
fire is challenging because areas impacted by wildfire may be remote, difficult to access, and/or dangerous to 
survey. The difficulties of post-fire monitoring are compounded by the global increase in the frequency and 
severity of disturbances, as expansion of disturbed areas also increases the number and size of areas requiring 
post-disturbance monitoring. Methods that safely, efficiently, and extensively differentiate silviculturally bene-
ficial coniferous growth from barren ground or deciduous shrubs are necessary to inform post-fire forest man-
agement. Satellite imagery can detect burn patterns, but monitoring changes in forest structure post fire is 
challenging due to complex vegetation responses. To overcome this challenge, this study combines post- 
disturbance spectral trajectory measures from a time series of historical Landsat imagery with field and 
remotely piloted aircraft (RPA) lidar (light detection and ranging) data to examine vegetation recovery of 
lodgepole pine (Pinus contorta) dominated sub-boreal forests after high-severity fires in 2006 in central British 
Columbia, Canada. Distinct spectral recovery trajectories were identified using data-clustering from a combi-
nation of seven Landsat spectral indices, with trajectories varying by recovery magnitude and rate. The forest 
structure associated with each distinct trajectory of spectral recovery was analyzed using 430 ha of spatially 
explicit forest structure measures (e.g., basal area, stem counts) and composition (e.g., percent coniferous) 
derived from 26 coincident field plots and high density RPA lidar (>200 points/m2) data. By comparing spectral 
trajectories to forest structure measures, we found the most spatially abundant cluster of spectral recovery 
coincided with a basal area of 0.62 m2/ha, high stem densities (>5000 stems/ha) and a high abundance of 
coniferous trees (>95 % coniferous). Around 10 % of the landscape was associated with relatively high abun-
dance of deciduous vegetation (>20 %) in addition to very high conifer stem densities (>8000 stems/ha). By 
identifying the structural characteristics associated with unique Landsat spectral trajectories, we highlight the 
combined value of RPA lidar data and satellite image time series in providing a detailed and spatially explicit 
characterization of post-fire recovery relevant to managed forests.   

1. Introduction 

Wildfires are a ubiquitous global forest disturbance, particularly in 
the forests of dry interior western North America. In Canada from the 
1980s to present, wildfires burned 2.5 times more land area than was 
harvested nationally (White et al., 2017a). Wildfires are expected to 
increase in size and severity as global temperatures rise and summers 

become drier and more prolonged, ultimately increasing the probability 
of ignition and fire spread (Baltzer et al., 2021; Pausas and Keeley, 2021; 
Westerling et al., 2006). Research demonstrates that increasing wildfire 
activity and changing climate shift the pathways of forest recovery, 
rearranging composition, and altering forest structures (Hansen and 
Turner, 2019; Stevens-Rumann and Morgan, 2019). Possible ecosystem 
recovery pathways can be characterized as quadripartite; as described 

* Corresponding author. 
E-mail address: Sarahsmith.tripp@alumni.ubc.ca (S.M. Smith-Tripp).  

Contents lists available at ScienceDirect 

ISPRS Journal of Photogrammetry and Remote Sensing 

journal homepage: www.elsevier.com/locate/isprsjprs 

https://doi.org/10.1016/j.isprsjprs.2024.01.008 
Received 26 May 2023; Received in revised form 18 December 2023; Accepted 12 January 2024   

mailto:Sarahsmith.tripp@alumni.ubc.ca
www.sciencedirect.com/science/journal/09242716
https://www.elsevier.com/locate/isprsjprs
https://doi.org/10.1016/j.isprsjprs.2024.01.008
https://doi.org/10.1016/j.isprsjprs.2024.01.008
https://doi.org/10.1016/j.isprsjprs.2024.01.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2024.01.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


ISPRS Journal of Photogrammetry and Remote Sensing 208 (2024) 121–135

122

by Seidl and Turner (2022), the four possible ecosystem pathways are: 
(1) no changes in forest composition or structure (forest resilience), (2) 
changes in forest structure (forest restructuring), (3) changes in 
composition (forest reassembly), and, (4) changes in both structure and 
composition (forest replacement). Which of these pathways is consid-
ered “ideal” or “desirable” for a specific forest depends on the ecosystem 
services provided by that forest (Millar and Stephenson, 2015) and the 
definition of post-fire ecosystem recovery (Bartels et al., 2016). If timber 
harvesting is a primary objective of forest management, measurements 
that quantify recovery of commercially important tree species are 
important. Thus, metrics of stand structure, such as basal area (BA), tree 
density (stems per hectare), and forest composition, including the ratio 
of coniferous to deciduous trees, should be prioritized when assessing 
potential silviculturally relevant recovery pathways (British Columbia 
Ministry of Forests, 2022). 

After a stand-replacing fire, forests regenerate in two key phases (1) 
establishment and regeneration (3–5 years) followed by (2) young forest 
regrowth (10–20 years; Bartels et al., 2016). The young forest regrowth 
phase is a critical time to assess the successful growth of coniferous 
forest structure and composition. Differences at this stage may signal 
that a forest is not resilient and is following a recovery pathway that 
leads to stand restructuring (e.g. decreases in forest density) and/or 
reassembly (e.g. a shift in coniferous proportion: Seidl and Turner, 
2022). In Canada, recent literature reviews have highlighted that nat-
ural disturbance research is relatively unrepresented in current Cana-
dian forest research and monitoring, but such work is pivotal for 
effective ecosystem monitoring (Waldron et al., 2023). To mitigate the 
impacts of climate change, forest managers must take proactive steps to 
identify forests vulnerable to novel ecosystem change, including forests 
that may not return the desired stand composition or stocking density 
(Williamson et al., 2019). 

Quantifying recovery after wildfire is important, yet recovery 
assessment in-situ is challenging, as deadwood often creates dangerous 
working conditions (Rakochy and Hawkins, 2006). The problem of re-
covery monitoring is compounded by the expansion of post-fire land-
scapes in western North America, where regenerating stands may be 
growing under different climate conditions than historic forests, 
impacting overall forest resilience (Davis et al., 2019). Historically, post- 
fire monitoring relied heavily on ground-based surveys, but the spatial 
extent of recent wildfires across much of western North America makes 
this approach impractical and prohibitively expensive (de Almeida 
et al., 2020). Spatiotemporally explicit and consistent sources of infor-
mation are therefore needed to successfully characterize the possible 
pathways of forest recovery. This level of detail can be provided with 
data from satellite missions such as Landsat, which serves to capture 
recovery at broad spatial and temporal scales (Wulder et al., 2022). 

Landsat is the most temporally continuous satellite mission; 
providing nearly half a century of spectrally consistent medium reso-
lution (30 m) data at a global scale (Wulder et al., 2022; Young et al., 
2017).The utility of Landsat and other satellite data for forest moni-
toring of burn-severity and remaining forest structure post-fire has been 
well-established. Remote sensing derived metrics of severity, such as the 
difference in the normalized burn ratio (dNBR), strongly correlate with 
in-field measures of burn severity (Chen et al., 2011; Miller and Thode, 
2007). While differences in disturbance severity can describe post- 
disturbance forest structures (e.g., tree density; Cocke et al., 2005), 
severity metrics are influenced by prior ecosystem events (Harvey et al., 
2019) and are not indicative of ecosystem recovery (Keeley, 2009). 
Other approaches, like the use of radiative transfer models or spectral 
mixture models can also be used to characterize post-disturbance re-
covery. However, radiative transfer models often require extensive 
parameterization for meaningful inference (Fernández-Guisuraga et al., 
2021; Solans Vila and Barbosa, 2010), and spectral-mixture models 
require additional assumptions on what comprises a spectral end- 
member (Lewis et al., 2017). Nonetheless, such approaches have been 
used to characterize short-term recovery, particularly under varying 

burn severity conditions (e.g. Fernández-Guisuraga et al., 2021; 
Fernandez-Manso et al., 2016). Satellite-based measures of ecosystem 
recovery should include a suite of metrics such as stem densities or 
biomass, among others. 

Modeling the relationship between satellite based spectral observa-
tions and structural measures is difficult for two main reasons. First, 
rapid ingrowth of mostly deciduous vegetation can mask coniferous 
recovery (Vanderhoof and Hawbaker, 2018). To overcome the issue of 
deciduous ingrowth, recent work suggests that incorporating multiple 
spectral indices (i.e. combining indices like the Tasseled Cap (TC) 
measures with NBR) may better explain landscape dynamics (Cohen 
et al., 2020). Combinations of spectral indices have been used to update 
stand-level inventories for mature forest structures (Bolton et al., 2018), 
yet, of these multi-index models, there has been little focus on capturing 
measures of early forest recovery – particularly relevant to silviculture. 
Spectral-mixture models also avoid index saturation and limit back-
ground effects (Adams et al., 1995). While they present a viable post- 
disturbance monitoring solution, past research does not capture a 
suite of silvicultural metrics, particularly forest structure metrics (Fer-
nandez-Manso et al., 2016). In this case, spectral-mixture models do not 
make sense for modeling structural metrics such as basal area or stem 
density because there is no clear spectral ’end-member’. 

A secondary issue for assessing forest structure as observed via sat-
ellite is that building these relationships relies on accurate forest 
structure measurements over large areas (White et al., 2022). One 
approach to gather accurate forest structure data over large areas is to 
combine satellite observations with comprehensive structural forest 
assessments from Lidar (White et al., 2017a; Coops et al., 2021). Lidar 
(light detection and ranging) offers a viable sampling technology for 
structural recovery assessment (Wulder et al., 2012). Lidar captures 
overstory structure, which drives satellite spectral responses, and pen-
etrates through this overstory to describe below-canopy forest structure 
(Chisholm et al., 2013; Jarron et al., 2020). Additionally, the develop-
ment of Remotely Piloted Aircraft (RPA) lidar systems offers a range of 
new benefits (Goodbody et al., 2017), like rapid sampling in diverse 
locations and descriptions of fine-scale vegetation, such as tree seed-
lings, at submeter accuracies (Shrestha et al., 2021). Spatially exhaus-
tive RPA datasets, combined with field measures, can be used to 
generate wall-to-wall estimates of silviculturally relevant characteris-
tics, including basal area and stem counts. With these metrics, we 
improve our capacity to measure forests recovering from disturbances at 
the meter resolutions required by forest managers (Moe et al., 2020). 

Landsat is an important tool to assess forest recovery in the forest 
regrowth phase over large spatial scales (Wulder et al., 2009). Linkages 
between Landsat spectral observations of recovery and forest structural 
development in regenerating forests have been explored using field plot 
(White et al., 2023, 2019) and airborne lidar data (Chirici et al., 2020; 
Senf et al., 2019; White et al., 2018). However, less research has been 
undertaken to assess silviculturally focused metrics of recovery in rela-
tion to satellite spectra. Further, given the expanding extent of wildfire 
areas, the use of cost efficient RPA Lidar data datasets offers an oppor-
tunity to provide ‘ground-truthing’ data for spectral relationships 
(Pajares, 2015). 

This paper explores how Landsat time series data can inform the 
spatially variable return of forest structure following a wildfire event. 
Our objective was to determine whether distinct expressions of forest 
structure, particularly expressions important for silviculture, are 
discernible using temporal trajectories of spectral indices in locations of 
high burn severity. We focused on silviculturally relevant structural 
recovery metrics that are of interest to forest managers, including: basal 
area, stem counts, and species composition. Of these metrics, we hy-
pothesized that differences in composition would have the strongest 
differences in spectral trajectories, as deciduous trees are spectrally 
distinct from conifers and deciduous forbs are generally the fastest to 
recover (Vanderhoof and Hawbaker, 2018). We evaluated the relation-
ship between Landsat spectral trajectories of recovery and forest 
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structure metrics derived using field plot measurements combined with 
high-density (>200 pts/m2) RPA lidar data in an area impacted by 
wildfire 16 years prior. 

2. Theoretical background 

2.1. Spectral trajectories, indices and their components 

Spectral trajectories describe the temporal trend of raw band mea-
sures or composite indices based on multiple bands. Recent research 
suggests that incorporating multiple indices and bands in disturbance 
identification models improves classification because including multiple 
indices, such as those that capture both landscape greenness and 
wetness, better capture forest structures (Cohen et al., 2020). 

At the broadest scale, visible and near-infrared bands (NIR) capture 
landscape greenness. Immediately following a disturbance, decreases in 
live vegetation result in lower NIR and SWIR reflectance, and, generally, 
higher red reflectance. In the years following disturbance, rapid ingress, 
usually by forbs and grasses, causes NIR reflectance to increase at rates 
that are highly correlated with the rate of biomass production (but 
undifferentiable between short-lived young forbs and tree production) 
of the landscape (Peterson, 1992). Generally, recovering forests domi-
nated by deciduous components will green faster and earlier but 
decrease in green and NIR reflectance 15–20 years after the disturbance 
(Nilson and Peterson, 1994). In the context of our study, in deciduous- 
dominated areas where forb growth is likely, we would anticipate a 
rapid increase in greenness focused spectral indices. 

The shortwave infrared region of the spectrum and indices which 
incorporate the shortwave, such as the tasselled cap wetness trans-
formations (Crist and Cicone, 1984), 1984), better capture vegetation 
structure compared to measures like NDVI, which excludes the short-
wave. The inclusion of SWIR describes vegetation stored water (Horler 
and Ahern, 1986). As forest structure recovers, SWIR reflectance in-
creases. And so, indices like tasseled cap wetness (TCW) trend positive as 
bare soil and water decrease. As TCW is a strong indicator of changes in 
forest structure (Cohen and Goward, 2004), we expect more muted 
temporal increases in regions with high basal area, as basal area is a 
longer term indicator of a woody recovery. However, tree size and 
spacing can be highly variable; some areas may have uniformly spaced 
smaller conifers or irregularly spaced large conifers. Variability in tree 

spacing and bare ground cover would produce variability in SWIR and 
associated indices. The variability in SWIR associated indices theoreti-
cally describes the interplay between complex forest structure and bare- 
ground reflectance (Pflugmacher et al., 2012). Additionally, TC indices 
may improve delineation between broadleaf and coniferous as the 
higher water stored by broadleaf vegetation will decrease TCW values 
(Czerwinski et al., 2014;Fig. 1. 

3. Study site and data acquisition 

3.1. Study location 

The Quesnel Timber Supply Area (TSA) is located on the interior 
Plateau of British Columbia, a mid-elevation (500–1200 m) geographic 
area with rolling terrain composed of dry interior forests. These dry 
interior forests are expected to increasingly experience high-severity 
fires due to both climate change and forest management legacies 
(Hessburg et al., 2005). The western TSA, where study sites are located, 
is generally drier than eastern regions, with relatively cool summers and 
short shoulder seasons (Steen and Coupé, 1997). The western region is 
split between sub-boreal spruce (SBS) and sub-boreal pine spruce (SBPS) 
biogeoclimatic zones (Meidinger and Pojar, 1991). Both zones are 
dominated by hybrid or white spruce (Picea glauca), subalpine fir (Abies 
lasiocarpa), lodgepole pine (Pinus contorta) in drier areas, and trembling 
aspen (Populus tremuloides) in wetter areas. Historically, these forests 
have had high-severity burns every 125 years (Biodiversity Guidebook, 
1995). However, in the last 20 years, remarkable large-scale distur-
bances, including wildfires and mountain pine beetle (Dendroctonus 
ponderosa; MPB) infestations, have decimated a large proportion of the 
Quesnel TSA. Since 2000, an estimated 20 % of the TSA has experienced 
a stand-replacing disturbance (either from fire or MPB, see Fig. 2; Her-
mosilla et al., 2016). The 2017 Plateau complex fire, the largest fire in 
recent BC history, burned approximately 550,000 ha (ha) of the Quesnel 
TSA (British Columbia Data Catalogue, 2022). Our study sites are 
located in fires that burned in 2006, before a large-scale MPB outbreak 
affected many of the other lodgepole pine forests in the region. Two 
study sites were located in the same fire area, the Watlus Lake fire – 
which burned ~ 8,500 ha, and a third site in an unnamed fire that 
burned ~ 10,800 ha.Fig. 2. 

Fig. 1. Example spectral trajectory with four trajectory components labeled with solid black lines. Disturbance magnitude is only included for NBR.  
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3.2. Data 

To assess whether Landsat post-fire temporal trajectories informed 
subsequent forest recovery, we combined three distinct data types: (1) 
time series of spectral data from Landsat composites, (2) ground-based 
measures of forest structure, which we extrapolated across areas of in-
terest using (3) RPA Lidar (Fig. 3). To simplify analyses, we excluded 
managed forest areas (i.e., planted or fertilized). To identify areas of 
high severity fire in 2006 for both field and lidar sampling, we calcu-
lated the dNBR and applied existing ‘high-severity’ thresholds to define 
dNBR severity classes (BC Ministry of Forests, 2021). The following 
sections describe acquisition and processing of three data sources: sat-
ellite, ground-based measures, and RPA lidar. 

3.2.1. Landsat temporal trajectories 
Measures of land surface reflectance from space can be obscured by 

clouds or haze. Composite images combine captures across multiple 
acquisition dates and offer a way to circumvent no-data areas from 
clouds or haze on a specific day. We used the Best-Available Pixel (BAP) 
approach to create cloud-free satellite image composites (White et al., 
2014). The BAP compositing approach prioritizes pixels based on a 
distance to a target day of the year (generally August 1 for Canadian 
forests, corresponding to peak growing season) and the percent cloud 

cover and a preference for images from Landsat 8 (White et al., 2014). 
We created Landsat annual image composites using the BAP compositing 
approach hosted in Google Earth Engine, prioritizing August 1st with a 
30-day date range and a maximum of 70 % cloud cover in a scene 
(Saverio, 2021). The following spectral indices were generated from 
BAP composites for each year from 1995 to 2021: NBR (Key and Benson, 
2006), NDVI, NDMI (Morresi et al., 2019), and Tasseled Cap trans-
formations of brightness, greenness, wetness, and angle (TCB, TCG, 
TCW, and TCA, Crist and Cicone, 1984). 

We used openly available Landsat-based data products to identify 
past wildfire locations within our study area (Hermosilla et al., 2016; 
Hermosilla et al., 2018) open and available for download at: https:// 
opendata.nfis.org/mapserver/nfis-change_eng.html). In these products, 
wildfires were identified using the Landsat-derived Composite 2 Change 
(C2C) approach described by Hermosilla et al. (2015). The C2C 
approach uses a breakpoint analysis of spectra of BAP composites, spe-
cifically dNBR, to identify the year of change and post-disturbance 
spectral trajectories to identify and classify a disturbance. We verified 
the burn perimeters using a fire polygon data set that catalogues all fires 
yearly from aerial and satellite imagery (BC Ministry of Forests, 2021). 

3.2.2. Field measurements 
For our structural data collection, we selected three locations that 

Fig. 2. Top: Location of research sites in Quesnel TSA. Black areas are the disturbed areas (fire, harvest, road, etc) for the past 20 years. Blue dots show the study 
sites. Below: Outlines of study fires colored by dNBR (delta Normalized Burn Ratio) fire severity (low = yellow, high = purple). Flight areas are outlined in blue. The 
inset map shows BC study site in reference to Canada. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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experienced high-severity fires in 2006. Plot locations were selected 
randomly from areas that met the high-severity dNBR thresholds. We 
eliminated random selections that were inaccessible to field crews and 
not-feasible for RPAS flights. To calibrate lidar-derived forest structural 
measurements, we measured 26 ground plots in the summer of 2022, 
coincident with lidar data acquisition. Plots aimed to capture the di-
versity of forest structure present in the study site as identified via an 
RPA reconnaissance flight. Precise (5–30 cm) locations of the plot cen-
ters were collected by a Trimble Geo7X GNSS unit and corrected using 
the BC Active Control System base stations. Each fixed area circular plot 
had a 17 m radius (900 m2) to correspond to the area of a Landsat pixel. 
In each plot we recorded the number of stems for all trees greater than 
1.3 m tall, the diameter at breast height (DBH) of all stems ≥ 4 cm DBH, 
and the height of the eight tallest trees. Thresholds for height and DBH 
were based on provincial monitoring standards (BC Ministry of Forests, 
2023). We estimated cover by dividing the plot into 8 radial sections and 
recording the proportion of coniferous, deciduous, and bare earth 
(which included downed woody debris) that we then averaged at plot 
level. 

3.3. RPA flights and lidar processing 

A DJI Zenmuse RPA and L1 lidar system acquired over 430 ha of 
point cloud data across three sites, which each averaged 155 ha. Lidar 
system details and flight acquisition parameters are included 
in Table S1. Lidar data processing used standard workflows, including 
denoising, ground classification, height normalization, and calculation 
of point cloud metrics (White et al., 2017b). Progressive ground filtering 
(Klápště et al., 2020) was used to differentiate between the ground, low- 
lying vegetation, and coarse-wood. Progressive ground filtering 

classified returns between 10 and 20 % of returns heights as ground, 
iterating over increased window sizes (0.25 m, 0.33 m, and 0.5 m) and 
removing points that would result in dramatic elevation changes (>0.3 
m). Obvious and abundant coarse woody debris, which appeared as a 
linear feature when the ground was poorly classified, informed ground 
filtering parameterization. Lidar point clouds were georegistered in DJI 
Terra (version 2.1.6) and exported to Lastools for denoising, classifica-
tion, and normalization (Isenburg, 2014). 

Normalized point clouds from the progressive ground classification 
were inputs for the final forest metric models. To reduce the variable 
point density of clouds, we decimated all point clouds to ensure that 
each 25-m grid had return densities within one standard deviation of the 
mean number of returns for the entire site area. Lidar point cloud met-
rics including dispersal (van Ewijk et al., 2011), dispersion, percentiles 
above varying thresholds (Roussel et al., 2020), and L moments (Kar-
vanen, 2006) were calculated across the field site at a 30 m resolution to 
match the resolution of Landsat, and for each plot at a 20 cm resolution 
(for validation). 

4. Methods 

To assess structural forest recovery over large scales, we created 
wall-to-wall estimates of forest structure for selected study sites using 
lidar data. These estimates were used to investigate the ability of tem-
poral trajectories of satellite spectra to discern distinct expressions of 
forest structure. Our investigation is divided into three steps: cluster 
analysis, association with structure, and application of clustering to a 
larger fire area (Fig. 3).First, we derived post-fire temporal trends of 
Landsat spectral measures for the seven selected indices (Table 1) from 
2005 to 2021. Temporal trends (trajectories) were delineated into 

Fig. 3. Conceptual overview of study approach. First section (3. Data) describes data collection including satellite data and estimates of forest structure. Second 
section (4. Methods) shows model development in three parts: (1) cluster development and assessment, (2) cluster association, and (3) application of clustering to 
larger fire area. 
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segments, henceforth referred to as trajectory components. Components 
were used as inputs into a kmeans data-clustering algorithm that iden-
tified unique clusters of spectral trends. Second, we assessed the asso-
ciation between each trajectory cluster and three wall-to-wall structural 
metrics derived from the RPA and field data: (1) BA, (2) stem counts, and 
(3) coniferous to deciduous ratio. Third, we applied the clustering al-
gorithm across a burned landscape where there are no historical struc-
tural measures. 

4.1. Wall-to-wall forest structure predictions 

From RPA lidar data, we estimated three silviculture measures of 
forest structure (BA, stem counts, and the coniferous to deciduous ratio) 
using generalized linear models (GLMs). GLMs correlated field measures 
with lidar metrics such as L-moments, dispersion, cover, and other 
standard height metrics as listed by Falkowski et al. (2009). Our wall-to- 
wall approach was based on best-practices outlined by White et al. 
(2017). BA models used a two-step segmented model process which first 
modeled the probability of measurable BA from a logit link function. BA 
models were augmented with plot measures in undisturbed forests to 
ensure that the model was accurate in regions with a higher BA. For stem 
count models, we used zero-inflated negative binomial regressions that 
estimated the number of stems > 1.3 m for each Landsat pixel. This 
included a conditional model that first calculated the likelihood that 
there were stems in the plot and then a model for the number of stems in 
each plot. Predicted stem counts represent the number of stems in the 
size of each Landsat pixel (900 m2; hereafter stems/pixel). Finally, we 
used a beta regression to model the coniferous: deciduous ratio. 

For all models, lidar metrics with strong inter-correlations 
(Spearman correlation > 0.7) were not used. Final reported model co-
efficients and accuracy were output from a k-folds algorithm with 100 
iterations. Final model predictions across the study area were built from 
model coefficients and represented spatially-explicit estimates of BA, 
stem counts, and percent conifer for the entire area of RPAS data at each 
site. 

4.2. Unique satellite spectral trajectories from cluster analysis 

4.2.1. Clustering of spectral trajectories 
The clustering algorithm incorporated three spectral trajectory 

components computed for the seven Landsat spectral indices (NDVI, 
NBR, NDMI, and the tasseled cap transformations: TCB, TCG, TCW, and 
TCA) for each pixel within the study area. Our selection of spectral 
indices was based on a review of the literature for the most pragmatic 
indices for both disturbance classification and subsequent forest moni-
toring (Hermosilla et al., 2015; Nguyen et al., 2020; Pflugmacher et al., 
2012; Senf and Seidl, 2022; Vanderhoof and Hawbaker, 2018; listed in 

Table 1). Trajectory components were based on those of Nguyen et al.. 
(2018) and White et al., (2017a) and included: (1) the magnitude of 
change between the year of disturbance and 2021 (recovery magnitude), 
(2) the Theil-Sen slope of the post-disturbance spectral trajectory, and 
(3) the spectral value for the index in 2021 (see Fig. 1; Nguyen et al., 
2018). Given the heterogeneous nature of fire severity, several patch- 
level metrics, including burn severity (dNBR) and a spatial average of 
burn severity, were included to better represent known ecological re-
covery patterns within a forest stand. In total, there were 23 separate 
trajectory components. Given the high dimensionality of the data, we 
partitioned clusters using the Manhattan distance (Aggarwal et al., 
2001). We selected an optimal number of clusters using the gap statistics 
which suggested ten initial seeds. The gap statistics measures the in-
crease in explanatory power between n and n + 1 clusters (Hennig, 
2020). Final cluster centers were outputs of a kmeans algorithm with a 
maximum iteration of 200. Cluster similarities were tested using cluster 
bootstrapping with 100 iterations of the Jaccard index (Hennig, 2020). 
Clusters that shared NBR recovery slopes were merged, which elimi-
nated similar clusters. 

Spectral characteristics of each cluster were investigated using a 
Principal Component Analysis (PCA), including the coefficients associ-
ated with the PCA transformation or the PCA loadings. Following the 
PCA analysis, we investigated the averages of trajectory components for 
each cluster. Spectral indices were related to the relative difference from 
a baseline period – defined for a stable forest period 1996 – 2005. As we 
were most interested in associating structural characteristics with each 
cluster, we constrained initial clustering to areas within RPAS lidar 
acquisition flights. To then extend the kmeans clusters to other areas 
within the fire perimeters, we applied a maximum likelihood classifi-
cation using the same inputs as kmeans, where classes were defined by 
initial clustering (Richards and Jia, 2006). We used the original kmeans 
cluster area to develop 80 % training (N = 3615) and 20 % testing (N =
1445) data. The final maximum likelihood accuracy was assessed by 
comparing the accuracy of the classifier with the test data. We also 
assessed the contiguity of spectral clusters on the landscape using each 
cluster’s total and patch area size and proportions (where a patch would 
be a pixel with eight identical neighbors). The Landscape metrics’ R 
package was used to estimate cluster continuity on the landscape 
(Hesselbarth et al., 2019), with differences in forest structure assessed 
among spectral clusters using the FSA R package (Ogle et al., 2022). 

4.2.2. Relating spectral trajectory cluster to forest structure 
We characterized cluster trajectories based on BA, stem counts 

(stems/pixel), and the ratio of coniferous to deciduous (coniferous: de-
ciduous). Tests for differences in forest structure among clusters used a 
Kruskal-Wallis nonparametric test and a two-sided post hoc Dunn test 
using the Sidak correction to control for error among multiple 

Table 1 
Definition of selected indices and their expected relationships between spectral trajectories of indices and robust recovery of forest structural metrics. B – blue, G- 
green, R – red, NIR – near infrared, SWIR1 – short wave infrared 1, SWIR 2 – short wave infrared 2. Saturation is the point where the sensitivity of the metric decreases. 
For NDVI, this is when red absorption is high. In NBR and NDMI this is when SWIR and NIR are equal.  

Index Description Equation Reference for Spectral Response Reference Forest Type 

NBR Normalized Burn Ratio NIR − SWIR2
NIR + SWIR2 

(Hermosilla et al., 2015; Nguyen et al., 2020) Boreal, 
Dry Deciduous 

NDVI Normalized Difference 
Vegetation Index 

NIR − R
NIR + R 

(Vanderhoof and Hawbaker, 2018) Dry coniferous 

NDMI Normalized Difference 
Moisture Index 

NIR − SWIR1
NIR + SWIR1 

(Senf and Seidl, 2022) Coniferous and mixed 
broad leaved 

TCA Tasseled Cap Angle 
arctan

(
TCG
TCB

)
(Pflugmacher et al., 2012) Mixed-Conifer 

TCG Tasseled Cap Greenness − 0.1603B − 0.2819G − 0.4934R + 0.7940NIR −
0.0002SWIR1 − 0.1446SWIR2 

(Coefficients of: Crist and Cicone, 1984; implemented 
in: Pflugmacher et al., 2012) 

Mixed-Conifer 

TCB Tasseled Cap Brightness 0.2043B + 0.4158G + 0.5524R + 0.5741NIR +
0.3124SWIR1 + 0.2303SWIR2 

(Coefficients of: Crist and Cicone, 1984; implemented 
in: Pflugmacher et al., 2012) 

Mixed-Conifer 

TCW Tasseled Cap Wetness 0.0315B + 0.2021G + 0.3102R + 0.1594NIR −
0.6806SWIR1 − 0.6109SWIR2 

(coeffiences of: Crist and Cicone, 1984; implemented 
in: Nguyen et al., 2020) 

Dry Deciduous  
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comparisons (Dinno, 2017). All modelling was completed using base R 
stats (R Core Team, 2019), ‘betareg’ (Cribari-Neto & Zeileis, 2010; Grün 
et al., 2012), and ‘glmmTMB’ packages (Brooks et al., 2017). 

5. Results 

5.1. Wall-to-wall forest structure predictions 

Linear models successfully described the relationships between lidar 
estimates and field measures (Table S2). Field measured plots had an 
average BA of 6.8 ± 8.65 m2/ha, 0.08 ± 0.21 % coniferous, and average 
stem count of 321 ± 294 (stems/pixel). For linear estimates of these 
models, BA had the strongest agreement with field measures (R2 =

0.95), but was variable due to the high proportion of plots with low BA 
(RMSE = 6.285). This was followed by predicting whether an area had 
measurable trees (area under the curve (AUC = 0.79). The overall fit of 
the stem count model was moderate (R2 = 0.52, RMSE = 121). The 
coniferous:deciduous ratio had the lowest correlation to field data with a 
pseudo-R2 of 0.41 (RMSE = 0.11). 

Similarly, sites displayed variability in wall-to-wall estimates of 
structural recovery (Figure S2). Across all sites, 66 % of pixels had a 
measurable basal area (>0 m2/ha; Table 2). In general, estimates of the 
average basal area were variable within and across sites (average = 0.77 
± 0.81 m2/ha). Stem count estimates were also variable (596 ± 500 
stems/pixel). Overall, the sites were primarily coniferous, with all the 
sites having more than 50 % coniferous stems (Table 2). Fig. 4 shows the 
spatial variation in the forest structure of site 1 (located in the Watlus 
Lake fire), which exhibited similar structural variability compared to the 
other study sites (see Figure S3 and S4 for site 2 and site 3). 

5.2. Clusters of unique spectral recovery trajectories 

The clustering algorithm identified six unique spectral clusters that 
captured 81.6 % of the variation in the input data for the study sites. 
Fig. 5 shows a biplot of the first two principal components of a PCA on 
clustering analysis data. The first and second PCs collectively repre-
sented 68 % of the total variability in the data set. When scaled based on 
the proportion of variance, important metrics to describe dataset vari-
able (principal component loadings) included the Thiel Sen slope of 
NBR, TCA, and NDMI, and the regrowth of TCA and NBR (for a complete 
list of eigenvectors see Table S3). In the PCA plot, clusters 2 and 3 have 
the highest spectral overlap, and clusters 1 and 6 are the most distinct 
(Fig. 5). 

Fig. 6 shows the trajectories of spectral indices following the fire 
normalized to a pre-fire baseline (1996–2005). Most indices show 
similar trends with trajectories decreasing after disturbance, rapidly 
increasing, and plateauing to steady recovery at or above baseline 
values. Changes were most rapid for NDVI and TCB, most TCB values 
surpassed baseline less than a year after the disturbance. (Table S4). 
Conversely, NBR and TCA trajectories increased at slower rates. In 
cluster 1, both NBR and TCA took > 10 years to surpass baseline values 
(Fig. 6). Notably, the majority of NDMI and TCW pixels did not recover 
to pre-baseline values in most clusters (Table S4). 

Clusters generally exhibited similar temporal patterns of spectral 
recovery, but clusters were variable in their degree and magnitude of 
recovery. Cluster 2 and 3 had the greatest variability for within-year 

measures (shown by the line width of Fig. 6) and often overlapped the 
range of values in other clusters. In general, clusters 5 and 6 had the 
highest values for most spectral indices (Fig. 6). Cluster 1 had the largest 
decrease after the disturbance event and took the longest to surpass 
baseline values. Additionally, less than 10 % of pixels in cluster 3 sur-
passed values of baseline for TCA and NBR in 2021–15 years after the 
disturbance. More than 50 % and at least 10 % of pixels in other clusters 
(1,2,4,5,6) surpassed baseline values for NBR and TCA respectively 
(Table S4). 

Average trajectory components for measurement year (2021), 
regrowth magnitude, and Thiel Sen slope (Fig. 7) differed by spectral 
cluster. For the current year measure, cluster 6 had the highest index 
measures and cluster 3 had the lowest, except for TCB (Fig. 7 and 
Table S4). Regrowth magnitudes were highest for cluster 6, except for 
TCB, where cluster 3 is the highest (Fig. 7). Cluster 6 generally had the 
lowest slope of recovery for all indices. Similar to regrowth magnitudes, 
the average Thiel Sen slopes were highest for cluster 6, except the 
average TCB slope, which was highest for cluster 2. Clusters 2 and 3 had 
similar average magnitudes of recovery for both TCG and TCB 
(Table S4). Clusters 2 and 3 also had lower recovery slopes than cluster 
1, except for TCB where cluster 2 was higher. Slopes of recovery for NBR, 
NDMI, NDVI, and TCA were all significantly different (p < 0.1, 
Table S4). 

5.3. Relating spectral clusters and measures of forest structure 

Spectral clusters represented significantly different measures of for-
est structure (Fig. 8 and Table 4). BA estimates were highest for cluster 1 
(0.85 +/- 0.72 m2/ha), and lowest for cluster 6 (0.22 m2/ha). All clus-
ters had unique counts of coniferous stems per Landsat pixel. Cluster 3 
had the highest stem densities (750 ± 402), followed by Cluster 1 (623 
± 428), and Cluster 6 had the lowest (222 ± 266; Table 3). Areas with 
high stem counts and/or BA were spatially distinct from regions with a 
high deciduous composition (i.e., clusters 1 and 3 are distinct from 
cluster 6). For composition estimates, cluster 1 had the highest pro-
portion of coniferous stems (96 %), followed by cluster 2 (89 %). Cluster 
6 had the lowest coniferous to deciduous ratio (56 %). 

5.4. Spectral clusters applied to fire landscape 

Fig. 9 shows a maximum likelihood classification of the spectral 
clustering in relation to the 2006 Watlus Lake fire perimeter which ex-
pands from the original clusters constrained to areas with forest struc-
ture measures. The overall classification accuracy was 0.83 % 
(Table S5). Cluster 1 was the most commonly occurring cluster, covering 
33 % of the land area (Table 3). Cluster 3, the least common cluster, 
accounted for 8.2 % of the land area and had the fourth- largest average 
patch size (5.33 ha), where a patch denotes an area of at least 8x8 pixels. 
Cluster 4 had the smallest average patch size (4.52 ha). In the classifi-
cation, cluster 1 was the most accurately classified (user accuracy =
0.91; producer accuracy = 0.88, Table S5), and cluster 6, which repre-
sented the second smallest proportion of the landscape, was the least 
accurately classified (user accuracy = 0.7, producer accuracy = 0.68). 
Clusters 5 and 6, which were generally spatially grouped (Fig. 9), were 
frequently misclassified as one another (Table S5). In general, areas of 
high BA (clusters 1,2,3, and 5) were grouped and proximal to areas with 

Table 2 
Average structural metrics by pixel for each study site and averages for all study sites. +/- is the standard deviation among the site.  

Site # Basal Area (m2/ha) +/- Coniferous: 
Deciduous 

+/- Stem Counts (stems/900 m2) +/- Proportion w/ Basal Area 

1  0.56  0.72  0.87  0.19 556 463  0.63 
2  1.00  0.86  0.98  0.08 650 523  0.81 
3  0.21  0.48  0.72  0.32 230 243  0.51 
All Sites  0.62  0.78  0.87  0.23 509 472  0.66  
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Fig. 4. Example output of lidar structural model for Site 1. Rasterized models are shown below an orthographic photo and are colored according to the estimate of 
forest structure. Examples for site 2 and site 3 are located in the supplement. 

Fig. 5. PCA of pixels based on spectral indices. Points are colored by spectral clusters. Ellipses show where 50% of the data plots. Loadings are the scaled proportion 
of variance in PC1 and PC2. Ellipses represent the locations where 50 % of pixels from each cluster plot. 
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a high number of conifer stems - like cluster 3 (cluster 1 and is adjacent 
to cluster 3 Fig. 9). 

6. Discussion 

This study used temporal trajectories of various Landsat spectral 
indices to identify distinct types of post-fire spectral recovery that 
describe variants of post-disturbance forest structure. Such research is 
critical because the increasing frequency and severity of wildfires make 
ground assessments a difficult singular monitoring strategy (Huang 
et al., 2019), and satellite monitoring approaches struggle to capture 
distinct and important silviculture measures (Chu and Guo, 2014). The 
variable forest spectral types we observed corresponded with variable 
predictions of forest structure derived from integrated field plot mea-
surements and high-density RPA lidar data. Specifically, some clusters 
(e.g., cluster 1) demonstrated a higher proportion of coniferous recovery 
than spatially adjacent clusters (namely cluster 3). Cluster 3 had high 
coniferous stem densities, but also a higher proportion of deciduous 

species. Spectrally distinct locations where coniferous recovery is lower, 
like cluster 3, may represent areas transitioning from coniferous to 
mixed forest types (Epting and Verbyla, 2005; Hayes and Buma, 2021). 
Cluster 3 also returned to baseline values of NBR in an average of 5 
years, whereas cluster 1 took more than 13 years. The unique spectral 
trajectories we identified using kmeans clustering showcase our capacity 
to monitor structural differences, particularly those relevant to forest 
management, using spectral measures. With large-scale and intense fires 
in northwestern North America, recovery monitoring must capture 
spectral signatures that signal a transition from pre-disturbance stands 
(e.g., those dominated by lodgepole pine) to those with a higher pro-
portion of deciduous trees (Hayes and Buma, 2021; Kiel and Turner, 
2022; White et al., 2023). 

Relevant benchmarks for strong coniferous recovery are defined by 
historical work in similar xeric subalpine fire-prone forests. A recent BC 
study surveyed carbon sequestration and stem densities 10 to 60 years 
post-fire and found young regenerating forests had highly variable stem 
densities, anywhere from 100 to 10,000 stems/ha (Clason et al., 2022), 

Fig. 6. Spectral trajectories input to create 6 (shown in color) spectral clusters. “Pre-fire baseline” refers to the 10-year period preceding the fire (1995–2005). Values 
are the difference (%) from the pre-fire baseline before the disturbance, where 0 (black line) is no difference from baseline measures. Yearly values are two-year 
moving averages, with the line width equal to the standard deviation by spectral cluster and band. The vertical dashed line is the year of the fire (2006). 

S.M. Smith-Tripp et al.                                                                                                                                                                                                                         



ISPRS Journal of Photogrammetry and Remote Sensing 208 (2024) 121–135

130

or 90 to 900 stems per Landsat pixel. Our results were similarly variable; 
many of the clusters had high stem counts (average stem counts are all 
greater than 200 stems per pixel), but the stem count estimates were also 
highly variable. A meta-analysis of post-fire recovery in dry coniferous 
forests of Colorado found BA was generally greater than 0.2 m2/ha 
twenty years after a fire event (Donnegan and Rebertus, 1999). In our 

work, all clusters had an average BA higher than 0.2 m2/ha, but, similar 
to stem counts, responses were variable. It should be acknowledged that 
many studies of forest recovery opt to include trees below breast-height 
in BA calculation (e.g. Clason et al., 2022). However, the BA variability 
we observed has also been found in other models of early forest recov-
ery. For example, a Canada-wide study that included post-disturbance 

Fig. 7. Differences between average trajectory components for each cluster among seven unique bands. Color shows the associated spectral clusters. 2021 Measure is 
the summer 2021 Landsat measure, regrowth magnitude is the overall change from 2006 to 2021, and the Thiel Sen slope is the estimate regression line between 
2006 and 2021. Note: to allow metrics to plot on similar scales NBR, NDMI, and NDVI are multiplied by 1000. 

Fig. 8. Distribution of structural metrics: Basal Area (m2/ha), stem count (stems/pixel), and the coniferous:deciduous ratio. Boxes note the interquartile region and 
black lines are the median values. Columns that share symbols are statistically similar (Dunn test p < 0.05). 

S.M. Smith-Tripp et al.                                                                                                                                                                                                                         



ISPRS Journal of Photogrammetry and Remote Sensing 208 (2024) 121–135

131

basal area modeled a negative BA up to 10 years post-disturbance, but 
most forests were greater than 3.3 m2/ha 20 years after a disturbance. 
The dramatic change in BA in-between estimates at 10 and 20 years by 
Bartels et al. (2016) and the variability in BA within and among our 
spectral clusters suggests 10–20 years after a fire event, the forests un-
dergoes a period of rapid, but spatially variable BA growth. Spatial 
variability could result from site-level differences such as soil moisture. 
The study by Clason et al. (2022) found BA was highly variable based on 
moisture dynamics. We did not consider the variability in BA associated 
with soil moisture dynamics, and support that soil moisture is an 
important area of future research to better understand recovery dy-
namics (Talucci et al., 2019). 

6.1. Clusters derived from spectral trajectories capture unique post- 
disturbance recovery 

The six distinct spectral recovery clusters derived from the trajec-
tories of Landsat time series indices represent a range of young post-fire 

forest recovery responses. The most frequently occurring cluster (cluster 
1) covered 33 % of the area within the fire perimeters, had the greatest 
BA and the greatest coniferous proportion. Regions with strong conif-
erous recovery, such as cluster 1, were spectrally defined by a relatively 
slow but consistent spectral recovery from 2006 to 2021. Such recovery 
patterns are consistent with other landscape studies, which show dense 
coniferous forests have longer recovery times and a greater change 
magnitude or slope of recovery than mixed and broadleaf forests (Epting 
and Verbyla, 2005; White et al., 2023, 2022). We assessed the degree of 
recovery as a measure of return to a 10-year baseline, longer than some 
other studies looking at post-fire recovery (Gómez et al., 2014; White 
et al., 2017a). Disturbances in the baseline period would influence re-
covery dynamics, because landscapes recover differently from multiple 
disturbances (Kiel and Turner, 2022; Nguyen et al., 2018). However, 
prior to the fires at the research sites, the landscape did not undergo any 
major disturbances including harvest or wildfire (Zhu et al., 2020). 
While we believe that a 10-year baseline was acceptable for our research 
purposes, the overall influence of baseline period on spectral recovery is 

Table 3 
Landscape and structural metrics for each spectral cluster. Values are the average for each cluster (+/- standard deviation). Study area refers to area covered by lidar 
flights and Fire area is the entire 2006 Watlus lake fire perimeter.  

Cluster Coverage 
(%) 

Study Area Mean 
Area (ha) 

+/- Fire Mean Area 
(ha) 

+/- Basal Area 
(m2/ha) 

+/- Stem Counts (stems/ 
pixel) 

+/- Coniferous: Deciduous 
(%) 

+/- 

1  32.7  7.31  1.52  6.67  1.05  0.85  0.71 623 428 96 9 
2  27.8  5.39  0.89  6.80  0.87  0.42  0.61 503 352 89 15 
3  8.2  5.91  1.00  5.33  0.79  0.42  0.57 750 402 82 16 
4  11.2  3.48  0.28  4.52  0.47  0.52  0.63 421 343 84 20 
5  10.3  4.11  0.27  5.13  0.63  0.42  0.60 356 303 78 22 
6  8.4  5.72  0.65  6.27  0.90  0.22  0.47 222 266 56 32  

Table 4 
Outputs of Chi-Squared test and Dunn test for each structural metric. Only pairs that are statistically similar are listed (based on a P-value < 0.05).  

Variable Chi Squared Test Like Pairs (Dunn-test) Adjusted P-Val 

Basal Area Х 2(5, N = 6492) = 781.23, p = 0 2–5, 2–3 1 
Stem Counts Х2 (5, N = 6492) = 1194.69, p = 0 All Unique  
Composition Х 2 (5, N = 6492) = 1515.42, p = 0 2–4 0.59  

Fig. 9. Spectral classification 2006 Watlus Lake fire recovery. Sites covered by lidar are outlined in orange. White areas did not have enough spectral coverage for 
classification. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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important, as variability of ecosystems’ spectral values are highly site- 
specific (Pasquarella et al., 2016). 

The spectral responses for areas with low coniferous ingress behaved 
similarly across all indices. Clusters where deciduous growth was more 
pronounced (clusters 3, 5 and 6) had rapid spectral recovery of NDVI, 
NBR, NDMI, and TCG that then plateaued at or slightly above historic 
baseline values. Cluster 6, which had the lowest proportion of BA, stem 
counts, and coniferous ingress, exemplified this swift spectral recovery. 
A review of RPA orthophotos collected coincident with lidar data indi-
cated that cluster 6 was located in wetlands; this was verified by the 
negative regrowth in TCW related to water reflectance (Crist and Cicone, 
1984). A study that assessed the utility of various indices to differentiate 
between deciduous, harvested, and closed canopy stands found that 
TCW was best at identifying deciduous forest types (e.g., Populus spp), 
where leaf water concentration is more dominant in spectral responses 
(Czerwinski et al., 2014). Rapid recovery of cluster 6 was likely asso-
ciated with deciduous species, including willows or trembling aspen 
(Salix spp or Populus tremuloides), either not consumed in the fire, or that 
regrew or resprouted rapidly (Bartels et al., 2016; Dymond et al., 2002). 
Clusters 4 and 5 exhibited similar rapid spectral recoveries and eventual 
plateaus, but were generally less pronounced than the spectral recovery 
patterns of cluster 6. 

The low recovery slopes and 2021 spectral index values for cluster 
3–6 compared to cluster 1–2 suggest regions with high deciduous 
growth coincide with accelerated spectral recovery (for NBR, TCA, TCG 
these clusters surpassed baseline early on post-disturbance compared to 
clusters 1–3). The rapid spectral recovery associated with strong de-
ciduous growth is consistent with past research, including a multi-year 
study of boreal forests where fast spectral recovery also corresponded 
to deciduous growth (White et al., 2023). Further, the rapid recovery of 
TCG and TCA corresponds with a Canada-wide study reviewing different 
spectral indices for post-disturbance monitoring which found that 
measures like TCG, which rapidly recovered and then stagnated, were 
advantageous for monitoring deciduous ingrowth (Pickell et al., 2016). 
However, the same study found that measures such as NBR were slower 
to stagnate and, thereby, better for monitoring structural non-deciduous 
recovery (Pickell et al., 2016). We found that NBR and TCG, when 
analyzed in combination, were both informative of rapid deciduous 
recovery, a rapid recovery that stalls several years after disturbance. 

Select indices were particularly useful for differentiating between 
distinct landscape trajectories and structural recovery. TC indices 
(namely TCW), use visible, NIR, and SWIR, transformed into a singular 
value for landscape brightness, wetness, and greenness. These indices 
helped differentiate among areas of similar greenness, where one is 
coniferous and one is deciduous (Horler and Ahern, 1986). For example, 
all clusters had lower TCW slope estimates except cluster 1, which was 
25 % greater than other metrics (Table S4). The large change of TCW 
slope for cluster 1, which was dominated by conifers, was likely the 
result of the strong evaporative control by conifers which would in-
crease TCW (Moreno-Fernández et al., 2021). Cluster 2 had similar 
proportions of coniferous growth compared to cluster 1 but had a lower 
basal area and stem counts. The minor change in TCW of cluster 2 was 
likely due to a decrease in conifer density. Another index useful to 
differentiate between cluster 1 and 2 was TCB. TCB was the only index 
where the magnitude and slope of recovery of clusters 2 and 3 were 
higher than that of cluster 1. TCB values are likely higher because 
clusters 2 and 3 had lower basal area estimates than cluster 1. Higher 
TCB values are expected for clusters 2 and 3 because TCB is related to 
soil reflectance, which would decrease at higher basal areas (Horler and 
Ahern, 1986). This is confirmed by another study that estimated basal 
area from a single year of Landsat data in dry forests of eastern Oregon, 
where authors found TCB had a strong negative correlation with basal 
area (Pflugmacher et al., 2012). Similarly, in the current study, areas of 
higher TCB growth corresponded to areas with lower basal areas 
(Fig. 8). 

6.2. Relative importance of spectral indices are a consequence of 
multispectral approach 

Our results using trajectories from multiple spectral indices showed 
promise delineating variable forest recovery using components of 
spectral trajectories. Other studies, like Nguyen et al. (2018), use a 
similar combination of trajectory components of NBR to investigate 
recovery trajectories from diverse disturbance types in Victoria, 
Australia. Nguyen et al. (2018) also incorporated the Recovery Indicator 
(RI), a ratio of the change in NBR at 5 years post disturbance to the 
disturbance severity (Kennedy et al. 2012), instead of the magnitude of 
regrowth as we used. We excluded the RI in our analysis because pre-
liminary investigation suggested that including the recovery indicator in 
clustering decreased the explanatory power of the kmeans algorithm on 
our spectral trajectory data. As the Recovery Indicator is normalized to 
disturbance severity, it is designed to compensate for areas with lower 
pre-fire NBR or for lower magnitude changes and is thereby useful for 
highlighting landscape-level differences in post-disturbance recovery 
across large geographic areas at 5 years post disturbance (Kennedy et al. 
2012). As our analysis focused on two fire events within similar bio-
geoclimatic conditions and forest types, such broad landscape-level 
differences were not captured in our dataset. Future research is 
needed to investigate whether the importance of different satellite 
indices, as a descriptor of forest recovery variability, is altered by 
changes in forest types and biogeoclimatic conditions. 

The importance of tasseled cap indices for differentiating among 
structurally divergent landcover was consistent with previous work 
(Dymond et al., 2002). However, our results exhibited distinct patterns 
associated with our multi-index approach (Cohen et al., 2020; Viana- 
Soto et al., 2020). The ability of TCA to differentiate between struc-
tures in young forests could result from the metric representing a ratio of 
soil reflectance (TCB) to vegetation growth (TCG). However, other 
studies have found TCA less important than other indices. Specifically, 
Viana-Soto et al. (2020) used TCA and TCW to monitor decreases in 
forest health after fire events. They found that TCW detected the forest 
structure better and that TCA measures often became saturated as the 
forests matured. Similarly, Cohen et al. (2020) demonstrated that TCW 
was the best at disturbance and recovery identification even when other 
indices, such as NBR and NMDI, were included. Another study modeled 
aboveground biomass and found TCA was particularly advantages for 
modeling forest density in low-biomass highly dynamic forests (Gómez 
et al., 2014). As our field locations were located in a high-severity fire 
area and had overall low basal area, the local conditions could explain 
the overall importance of TCA as the most vital cluster determinant for 
PC1 and PC2 compared to the inverse results of Cohen et al (2020) and 
Viana-Soto et al. (2020). Further, Fornacca et al. (2018) studied burn 
scar identification more than five years after a fire. They found that 
NDMI and NBR were best able to measure variable conifer responses 
(Fornacca et al., 2018). The importance of NDMI in our study alongside 
the work of Fornacca et al. (2018) supports that incorporating NDMI 
into the multivariate assessment of structural recovery may better 
elucidate variable conifer recovery than TCW and TCA alone. Campos- 
Taberner et al. (2023) show that land use classification improved when 
using textural measures of NDVI for land use classification, suggesting 
one method to circumvent the spatial complexity of the spectral 
response is to integrate textural information of surrounding pixels. In 
general, spectral observations are influenced by the vegetation compo-
sition of the landscape and results should be applied with caution in 
areas where the severity of the fire is lower. 

6.3. Utility of RPA lidar for post-disturbance structure modeling 

Our work is an important contribution to research using lidar data to 
model structural forest recovery in young forests. Short and diverse 
forests are notoriously difficult to model with lidar data (Ørka et al., 
2016). In particular, the accuracy of modeling important attributes like 
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tree height and stem counts decreases when trees are shorter, due to 
uncertainty defining the ground (Ørka et al., 2016). Our forest attribute 
models were consistent with those developed in comparable ecosystems 
with variable vegetation types in conifer dominant forests and support 
that while structure estimates are variable, they are consistent. For 
example, one recent study used lidar data to create a Norwegian forest 
inventory (Nilsson et al., 2017). They estimated vegetation proportions, 
stem density, and basal area and found a high proportion of deciduous 
trees can artificially increase stem densities (RMSE was ~ 10 % higher 
when broadleaf proportion was greater than 75 %). In post-fire 
temperate forests in Oregon, Zald et al. (2014) modeled basal area 
and stem density with an overall accuracy of R2 = 0.77 and R2 = 0.67 
respectively. In our study, we had accuracies of R2 = 0.95 and R2 = 0.52 
for the same two metrics. Nevertheless, improving accuracy of RPA lidar 
models is imperative to increase the value of our work for forest man-
agers, who need to understand, in finer detail than our models support, 
the actual forest structures on the landscape (Goodbody et al., 2017). 

Improving accurate and applicable quantification of structural forest 
recovery will rely on additional field and lidar sampling in a diversity of 
ecosystems and disturbance types. In a recent study using Sentinel 2 
spectral data to ID bark beetle disturbances, they integrated harvester 
data to extrapolate the date of bark beetle attack (Jamali et al., 2023). 
Similarly, structural data from salvage logging operations could be used 
to understand the initial structural states of the forest after disturbances 
such as fire. Such sampling will also help to define the impact of one 
forest structure element (e.g., diversity in vegetation types) on another 
(e.g., stem counts; Saarela et al., 2015). With additional field measure-
ments in new locations, consistent RPA models can be developed (Coops 
et al., 2021; Dalponte et al., 2019). These models can serve as exemplar 
datasets for young regenerating forests that do not have field samples. 
Exemplar RPA models will ultimately decrease the time investment 
needed for ground assessments in potentially unsafe and extensive 
disturbed areas (Rakochy and Hawkins, 2006; Wulder et al., 2012). 
Furthermore, RPA lidar collects targeted and high-density point-based 
structural forest data at various times after disturbance. These metrics 
cannot be viably collected with field-based measures. RPA Lidar also 
offers a distinct advantage over large area aerial Lidar acquisitions 
because it can produce high-density repeatable lidar assessments instead 
of taking years to plan, collect, and process (Frolking et al., 2009). 

7. Conclusion 

Monitoring forest structural recovery must prioritize identifying 
persistent impacts of forest disturbance and novel ecosystem de-
velopments. We present a repeatable methodology to capture variability 
in structural recovery by relating them to unique clusters of spectral 
recovery. Further, when clusters were applied to the perimeter of the 
Watlus Lake fire, most of the area showed strong coniferous growth. 
However, nearly one-tenth of areas within the fire perimeter were 
spatially clustered areas of lower coniferous recovery and higher de-
ciduous growth. The spectral clusters thus identified areas that forest 
managers may prioritize for post-fire salvage logging, silvicultural pre-
scriptions, or hotspots to prioritize mitigation (Rana and Vauhkonen, 
2023; White et al., 2022). Landsat spectral clusters captured silvicul-
turally valuable structural forest recovery at spatial scales previously 
challenging to acquire without expansive field-based structural mea-
surements (White et al., 2023). Satellite-based analyses are cost-efficient 
and safety-conscious (Frolking et al., 2009). Therefore, the current 
study’s capacity to capture variable structural recovery is pivotal for 
forest decision makers. Given the ability to identify variability in 
structural recovery in a repeatable manner, future research should 
capitalize on the decreasing costs of RPA lidar alongside the extension of 
ALS data to expand such investigations among the increasing extent of 
disturbed ecosystems. Expanding RPA lidar data and continued analyses 
on multi-index spectral trajectories will better develop the diversity of 
spectral trajectories and their association with variable measures of 

structural recovery. These spectral trajectories describe areas of low 
stem and basal area recovery and high deciduous ingrowth, which may 
be linked to novel forest structures. For those interested in future forest 
structure, spatially and structurally distinct pathways of forest regen-
eration can be highlighted using satellite-derived rates of spectral 
recovery. 
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Nordkvist, K., Hyyppä, J., 2015. Model-assisted estimation of growing stock volume 
using different combinations of LiDAR and Landsat data as auxiliary information. 
Remote Sens. Environ. 158, 431–440. https://doi.org/10.1016/j.rse.2014.11.020. 

Saverio, F., 2021. BAP-GEE. 
Seidl, R., Turner, M.G., 2022. Post-disturbance reorganization of forest ecosystems in a 

changing world. Proc. Natl. Acad. Sci. 119 https://doi.org/10.1073/ 
pnas.2202190119. 

Senf, C., Müller, J., Seidl, R., 2019. Post-disturbance recovery of forest cover and tree 
height differ with management in Central Europe. Landscape Ecol 34, 2837–2850. 
https://doi.org/10.1007/s10980-019-00921-9. 

Senf, C., Seidl, R., 2022. Post-disturbance canopy recovery and the resilience of Europe’s 
forests. Glob. Ecol. Biogeogr. 31, 25–36. https://doi.org/10.1111/geb.13406. 

Shrestha, M., Broadbent, E.N., Vogel, J.G., 2021. Using GatorEye UAV-borne LiDAR to 
quantify the spatial and temporal effects of a prescribed fire on understory height 
and biomass in a pine savanna. Forests 12, 38. https://doi.org/10.3390/f12010038. 

Solans Vila, J.P., Barbosa, P., 2010. Post-fire vegetation regrowth detection in the Deiva 
Marina region (Liguria-Italy) using Landsat TM and ETM+ data. Ecological 
Modelling, Special Issue on Spatial and Temporal Patterns of Wildfires: Models, 
Theory, and Reality 221, 75–84. https://doi.org/10.1016/j.ecolmodel.2009.03.011. 
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