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• This study updates the community 
health vulnerability index for wildland 
fire smoke. 

• Counties with higher PM2.5 tend to show 
lower adaptive capacity and higher 
sensitivity. 

• Counties with higher vulnerability tend 
to experience higher PM2.5. 

• Highly vulnerable counties have a 
higher increase in yearly moderate/un-
healthy air days. 

• Northwest, Northern Rockies, and 
Southern regions have higher 
vulnerability.  
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A B S T R A C T   

Wildland fire smoke risks are not uniformly distributed across people and places, and the most vulnerable 
communities are often disproportionately impacted. This study develops a county level community health 
vulnerability index (CHVI) for the Contiguous United States (CONUS) using three major vulnerability compo-
nents: adaptive capacity, sensitivity, and exposure at the national and regional level. We first calculated sensi-
tivity and adaptive capacity sub-indices using nine sensitivity and twenty adaptive capacity variables. These sub- 
indices were then combined with an exposure sub-index, which is based on the Community Multiscale Air 
Quality data (2008–2018), to develop CHVI. Finally, we conducted several analyses with the derived indices to: 
1) explore associations between the level of fine particulate matter from wildland fires (fire-PM2.5) and the sub- 
indices/CHVI; 2) measure the impact of fire-PM2.5 on the increase in the annual number of days with 12-35 μg/ 
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m3 (moderate) and >35 μg/m3 (at or above unhealthy for sensitive groups) based on the US EPA Air Quality 
Index categories, and 3) calculate population size in different deciles of the sub-indices/CHVI. This study has 
three main findings. First, we showed that the counties with higher daily fire-PM2.5 concentration tend to have 
lower adaptive capacity and higher sensitivity and vulnerability. Relatedly, the counties at high risk tended to 
experience a greater increase in the annual number of days with 12-35 μg/m3 and >35 μg/m3 than their 
counterparts. Second, we found that 16.1, 12.0, and 17.6 million people out of 332 million in CONUS reside in 
the counties in the lowest adaptive capacity decile, highest sensitivity decile, and highest vulnerability decile, 
respectively. Third, we identified that the US Northwest, California, and Southern regions tended to have higher 
vulnerability than others. Accurately identifying a community's vulnerability to wildfire smoke can help in-
dividuals, researchers, and policymakers better understand, prepare for, and respond to future wildland fire 
events.   

1. Introduction 

Climate change has increased favorable conditions for wildfires 
(Goss et al., 2020; Jones et al., 2020), and humans have directly 
increased the risk of wildfires through decades of fire suppression efforts 
and exclusion of Indigenous cultural burning (Taylor et al., 2016), 
alteration of ecosystems and introduction of exotic species such as 
invasive annual grasses (Lambert et al., 2010), and rapid expansion of 
residential and recreational areas into the wildfire and wildland urban 
interface (Radeloff et al., 2018). The increased frequency of wildfires has 
led to a rise in wildfire smoke over the past few decades (Wilkins et al., 
2018), with an estimated 27-fold increase in the number of people who 
have experienced at least one day of wildfire fine particulate matter 
(PM2.5) above 100 μg/m3 per year in the past decade (Childs et al., 
2022). The substantial release of PM2.5 into the atmosphere has led to an 
increase in human mortality and morbidity. Roberts and Wooster (2021) 
estimated that the average annual global premature mortality attribut-
able to landscape fire smoke exposure is 677,745, which corresponds to 
0.52 % of total global mortality. 

To date, a growing body of evidence suggests that the most vulner-
able communities are often disproportionately impacted by wildland 
fire smoke (Rappold et al., 2017; Tessum et al., 2021, 2019), which 
exacerbates existing social and environmental injustices (e.g., Reid 
et al., 2016; Tessum et al., 2021, 2019). The impact of wildland fire 
smoke in a region is determined not only by the biophysical aspects of 
wildland fires such as frequency, intensity, and duration, but also by the 
demographic and socioeconomic factors in the region (Davies et al., 
2018; Haikerwal et al., 2015; Ye et al., 2021). As a result, there is a need 
to identify where communities are most vulnerable and/or dispropor-
tionately impacted by wildland fire smoke, as well as transdisciplinary 
approaches to tackle such challenges (D'Evelyn et al., 2022). 

We are aware of two efforts that have developed a vulnerability 
index to wildland fire smoke to identify vulnerable and/or dispropor-
tionately impacted communities. Rappold et al. (2017) introduced a 
county level community health vulnerability index (CHVI) based on 
wildland smoke simulated through the Community Multiscale Air 
Quality (CMAQ) model for the contiguous United States (CONUS) for the 
period between 2008 and 2012. This study identified that the counties 
along the western slope of the Appalachian Mountains have the highest 
vulnerability, with 10.3 million people experiencing >10 days/year 
with >35 μg/m3 PM2.5 as a result of wildland fires. They also found that 
the most vulnerable counties tend to experience more smoke exposures 
compared to less vulnerable communities. Another study done by Vai-
dyanathan et al. (2018) developed an online tool for identifying at-risk 
populations to wildfire smoke using historical locations of fires and burn 
severity, air quality, health data, and information on vulnerable 
populations. 

Here, we build upon these wildland fire vulnerability studies in three 
respects. First, we incorporate adaptive capacity, the ability of a region 
to adapt to natural hazards to reduce potential damages, in the 
vulnerability assessment, which is crucial for accurately reflecting the 
actual vulnerability of a natural system, region, or community (Rappold 
et al., 2017; Smit and Pilifosova, 2003). Second, we conduct a regional 

assessment, which complements existing vulnerability assessments (e.g., 
Rappold et al., 2017) that conduct national level analyses. Third, we use 
a longer time series of wildfire smoke exposure data and update all 
variables in the study with recent datasets. The former study was based 
on only 5 years of data (e.g., Rappold et al., 2017), which did not capture 
the recent years of record wildfire activity in the Western US 
(https://www.nifc.gov). By addressing these gaps in previous research, 
the present study seeks to enhance the understanding of vulnerability to 
wildland fire smoke exposure. With these improvements, we address 
three questions in this study: 

Q1: Which counties are more or less vulnerable to PM2.5 exposures 
solely from wildfires and prescribed fires (fire-PM2.5) at the national and 
regional level? 

Q2: How are fire-PM2.5 exposures associated with the adaptive ca-
pacity and sensitivity sub-indices, as well as the overall vulnerability 
expressed by CHVI? 

Q3: How many people reside in counties in the lowest adaptive ca-
pacity decile, highest sensitivity decile, and highest CHVI decile? Do the 
counties experience a greater increase in the annual number of days with 
12-35 μg/m3 (moderate) or >35 μg/m3 (at or above unhealthy for 
sensitive groups) due to wildland fires than their counterparts? 

2. Data and method 

2.1. Vulnerability assessment 

Vulnerability assessments are commonly used to measure the po-
tential damage and life loss from hazardous events and disasters (Cutter, 
1996). The assessments often refer to social vulnerability (Wang et al., 
2022). Social vulnerability can be measured with the characteristics of a 
person or community that influence their capacity to anticipate, 
confront, repair, and recover from the adverse impacts of disasters 
(Cutter et al., 2012; Flanagan et al., 2011). Vulnerability assessments 
can help identify, compare, and quantify vulnerable geographic areas, 
subpopulations, and industrial sectors through the application of various 
analytical frameworks (Fuchs et al., 2012). Such frameworks can pro-
vide a tool for decreasing population vulnerability, increasing adaptive 
capacity, building resilience to cope with disasters, and preparing 
effective disaster prevention and reduction (Du et al., 2015). Because of 
their practicality, a number of studies have adapted this framework with 
different settings depending on the purpose of the studies to investigate 
vulnerability to multiple natural disasters such as heat waves (e.g., Reid 
et al., 2009), floods (e.g., Kaźmierczak and Cavan, 2011), hurricanes (e. 
g., Burton, 2010), and wildfires (e.g., Chuvieco et al., 2014; Davies et al., 
2018). 

Vulnerability assessments provide insight into a region's vulnera-
bility to hazards (Adger, 2006). In this study, we define vulnerability as 
a function of exposure, sensitivity, and adaptive capacity following 
existing literature (Füssel and Klein, 2006; IPCC, 2007; Yoo et al., 2014). 
Exposure is “the degree, duration, and extent in which a system (region) 
is in contact with, or subject to, the perturbation” (Kasperson et al., 
2005), sensitivity is “the degree to which a system (region) is affected, 
either adversely or beneficially by natural hazards” (IPCC, 2014), and 
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adaptive capacity is “the ability of a system (region) to adjust to natural 
hazards to moderate potential damages” (Gallopín, 2006). Functionally, 
vulnerability is inversely related to adaptive capacity and positively 
associated with exposure and sensitivity. 

Based on the definitions and former literature (see Sections 2.2 
through 2.4 below), we systematically collected a total of one exposure, 
nine sensitivity, and twenty adaptive capacity variables to estimate 
vulnerability at the national and regional level. For the aims of our 
analysis, we limited variables to those that come from secondary data-
sets, are nationally representative, have national coverage, and consis-
tently contain adequate spatial (i.e., county) and temporal (i.e., annual 
average) resolutions. We derived variables from four sources: 1) US 
Census Bureau American Community Survey, 2) Centers for Disease 
Control and Prevention (CDC) National Environmental Public Health 
Tracking (https://www.cdc.gov/nceh/tracking/index.html), and 3) 
American Lung Association (https://www.lung.org/research/sota). 
More information on the choice of exposure, sensitivity, and adaptive 
capacity variables can be found below. 

2.2. Exposure 

Our main exposure variable is PM2.5 originating from wildland fires 
(fire-PM2.5) which cover both wildfire and prescribed fire. Using the 
same method of Wilkins et al. (2018), we estimated PM2.5 concentra-
tions from 2008 to 2018 using the CMAQ modeling system with and 
without wildfires and prescribed fires. The difference between the two 
model products is the contribution of fire emissions (i.e., fire-PM2.5) to 
the ambient PM2.5 levels. Inputs to CMAQ included gridded meteoro-
logical fields, emissions data, and boundary conditions. For regional 
CMAQ model simulations, we used annual CONUS Weather Research 
and Forecasting model (WRF) simulations utilizing 12 km horizontal 
grid spacing and 35 vertical layers from the surface to 50 hPa at varying 
thickness for meteorological fields (Wilkins et al., 2022). The North 
American Mesoscale Model from the National Centers for Environmental 
Prediction provided initial and boundary conditions for WRF. We based 
input emissions on a 12 km CONUS domain with speciation for the 
Carbon-Bond 05/6r3 chemical mechanisms. We used version 5.0.1–5.3 
of the CMAQ modeling system (Appel et al., 2021, 2017, 2013; Byun and 
Schere, 2006). In this study, we excluded the pandemic years as they 
represent highly skewed outliers for many air quality studies (e.g., Deng 
et al., 2022; Vichova et al., 2021). Details on the general model 
configuration can be found in Wilkins et al. (2018) and for the additional 
years summarized in Supplementary Material and Supplementary 
Table S1. 

With the simulated fire-PM2.5 concentrations, we calculated the 
average of all grid cell values within each county at the daily level from 
2008 to 2018. For this, we used the extract function in the raster package 
in R. This function returns the average values of the cells of a raster 
object that are covered by a polygon (i.e., county boundary), excluding 
cells that are only partly covered by the polygon. The daily values were 
then averaged to determine the daily average PM2.5 concentration for 
each county during the research period. 

2.3. Sensitivity 

We measured the county's sensitivity based on the proportion of nine 
subpopulation groups that are highly sensitive to fire-PM2.5 within the 
county: 1) young population (<5 years), 2) elderly population (≥65 
years), 3) agricultural and construction workers, 4) those with diabetes, 
5) obesity, 6) hypertension, 7) adult asthma, 8) pediatric asthma, and 9) 
chronic obstructive pulmonary disease (COPD). Previous studies have 
demonstrated that there is a greater adverse impact of smoke on those 
under 5 years (Ye et al., 2021) due to their smaller airways and higher 
ventilation rate compared with adults (Jacobson et al., 2012), and over 
65 years (Haikerwal et al., 2015) due to the gradual decline in physio-
logical processes over time and a higher prevalence of preexisting 

conditions among them (Sacks et al., 2011). We also included the pro-
portion of workers (agricultural and construction workers) who are 
more likely to be exposed to PM2.5 through outdoor work and an 
increased respiratory rate associated with physical labor (Liu et al., 
2021). Furthermore, we considered those having pre-existing health 
problems which are associated with higher risk of adverse health 
outcome following PM2.5 exposures, such as diabetes (Bateson and 
Schwartz, 2004; Mahsin et al., 2022), obesity (Siregar et al., 2022), 
hypertension (Reid et al., 2016), asthma (Stowell et al., 2019), and 
COPD (Bateson and Schwartz, 2004). Additional details (e.g., unit, 
source, data year) and the explanatory summary (e.g., mean, standard 
deviation, maximum, minimum) of these variables can be found in 
Supplementary Tables S2 and S3 respectively. 

2.4. Adaptive capacity 

We capture adaptive capacity by examining variables associated 
with a county's ability to either mitigate or exacerbate the impacts of 
fire-PM2.5 exposures on population vulnerability. For this, we selected 
twenty variables consisting of six demographic, nine socioeconomic, 
and five infrastructure variables derived from the literature and con-
strained by data availability. 

For demographic variables, we included five different demographic 
subpopulation groups which are commonly considered as vulnerable 
subpopulation groups during wildfire events: 1) disabled, 2) Black, 3) 
Hispanic, 4) American Indian and Alaska Native, 5) single parent 
households (Davies et al., 2018; Hwang and Meier, 2022). These groups 
are relatively more likely to have a limited adaptive capacity possibly 
due to their physical (Gaskin et al., 2017) or financial constraints (Cox 
and Kim, 2018). Hispanics and African Americans may be more likely to 
have higher reluctance toward fire mitigation practices due to their 
cultural, historical, or political experiences (Bowker et al., 2008; Davies 
et al., 2018; Nagler, 2017), which could in turn reduce their adaptive 
capacity. In addition to the five vulnerable subpopulation groups, we 
included the percentage of the population in the workforce to determine 
how many people would be available to participate in response to 
wildfire events, such as assisting with community evacuations (Smith, 
2016). 

For socioeconomic variables, we chose nine socioeconomic subpop-
ulation characteristics which are highly associated with vulnerability to 
fire-PM2.5: 1) income, 2) poverty, 3) unemployment rate, 4) English 
proficiency, 5) education, 6) mobile home, 7) multi-housing unit, 8) 
households without car, and 9) population without health insurance. 
Communities characterized by low income, high poverty, and high un-
employment rates have comparatively limited financial capacity to 
cover the costs of fire mitigation services (e.g., tree thinning), fire in-
surance, rebuilding, and community firefighting resources required to 
extinguish fires (Collins and Bolin, 2009; Davies et al., 2018; Mercer and 
Prestemon, 2005), which reduces a community's adaptive capacity. We 
also include English proficiency and education (high school diploma), as 
those with limited English proficiency and low education attainment are 
more likely to have difficulties in accessing relevant information, 
recovering from disasters, and communicating/networking with others 
(Flanagan et al., 2011; Fothergill and Peek, 2004; Muttarak and Lutz, 
2014). In addition, we added housing types (mobile home, multi-unit 
house) and vehicle ownership. Better housing quality and trans-
portation access could provide more smoke-resistant indoor environ-
ments and reliable transportation to evacuate from high smoke areas 
(Brodie et al., 2006; Fatemi et al., 2017). Furthermore, we included the 
percentage of population with health insurance, which is assumed to be 
associated with adaptive capacity of people for mitigating the negative 
health impacts of fire-PM2.5 (Vo and Van, 2019). 

Finally, we selected five infrastructure variables which could be used 
to effectively respond to a hazard by providing evacuation routes (road 
density), supporting health care services (number of hospitals, Phar-
macies, and drug stores, healthcare support occupations), and supplying 
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protective services (firefighters and other protective service workers). 
These could hypothetically be used by those communities exposed to 
fire-PM2.5. Additional details (e.g., unit, source, data year) and the 
explanatory summary (e.g., mean, standard deviation, maximum, min-
imum) of the variables can be found in Supplementary Tables S4 and S5 
respectively. 

2.5. Analytic methods 

Our analytic framework is divided into two parts: 1) developing a 
CHVI and 2) evaluating the calculated adaptive capacity and sensitivity 
sub-indices, as well as CHVI, alongside fire-PM2.5 exposures. To develop 
the CHVI, we employed a deductive method. Unlike the inductive 
method, which is based on statistical relationships, the deductive 
method is built on prior theory and knowledge from previous studies 
without any additional rationale for the selection of those variables 
(Yoon, 2012). Because of the method's flexibility, each study has a 
different set of variables for assessing the degree of vulnerability 
depending on research purpose and subject (e.g., Mucke, 2012; Shepard 
et al., 2012). Compared to inductive methods based on statistical 
methods (e.g., principal component analysis), our approach better helps 
communities by directly identifying what components (exposure, 
sensitivity, adaptive capacity) are elevating or lowering the degree of 
vulnerability. 

Our study generated a vulnerability index specifically for wildland 
fire smoke. We achieved this by selecting variables that have been 
previously reported to be highly associated with wildland fire smoke and 
fire-related health outcomes, instead of using a pre-existing index such 
as the CDC/ATSDR Social Vulnerability Index (SVI) which focuses on 
broader and general emergency events (https://www.atsdr.cdc.gov/ 
placeandhealth/svi/index.html). After collecting a total of one expo-
sure, nine sensitivity, and twenty adaptive capacity variables, we 
assigned each variable's direction based on the relationship between 
vulnerability and the variable. If a unit increase (e.g., percent) of the 
variable (e.g., proportion of households below poverty) elevates the 
degree of vulnerability, we assign plus (+) as its direction. On the other 
hand, if a unit increase (e.g., percent) of the variable (e.g., proportion of 
population in workforce) lowers the degree of vulnerability, we assign 
minus (− ) as its direction. Each variable is then standardized to a scale 
between 0 and 1 because each variable has its own unit and direction 
(Eq. 1). Here, a score of 0 means the lowest exposure, the lowest 
sensitivity, and the highest adaptive capacity, and a score of 1 represents 
the highest exposure, the highest sensitivity, and the lowest adaptive 
capacity. Note that a low value on the “adaptive capacity sub-index” 
actually indicates a high level of adaptive capacity, whereas a high value 
on the “adaptive capacity sub-index” signifies a low level of adaptive 
capacity. After standardization, if the direction of variables is minus (e. 
g., proportion of population in workforce), we subtracted the stan-
dardized values from 1 to match the adaptive capacity scale with the 
highest adaptive capacity being 0 and the lowest adaptive capacity 
being 1. 

Vij =

(
Xij − MinXi

)

(MaxXi − MinXi)
(1)  

where Vij is the standardized value associated with the ith county for 
variable j; Xij is the initial value of the ith county for variable j; MaxXi 
and MinXi represent the maximum and minimum value of variable j. 

Next, the three sub-indices were separately calculated for exposure, 
sensitivity, and adaptive capacity by averaging all variables within each 
component (i.e., exposure, sensitivity, adaptive capacity). In this pro-
cess, we weighted each variable equally. Unequal weight could be 
derived from statistical (e.g., factor analysis, regression coefficients) or 
participatory approaches (e.g., focus group discussions, surveys), but in 
practice neither approach has achieved primacy when determining 
weights, and unequal and subjective weighting could bring more 

uncertainty and errors than the equal weighting (Tate, 2013). For these 
reasons, many studies have applied equal weights in index calculations 
(e.g., Aubrecht and Özceylan, 2013; Chow et al., 2012; Vescovi et al., 
2005). 

Finally, the exposure, sensitivity, and adaptive capacity sub-indices 
were multiplied to generate a composite overall CHVI after being stan-
dardized to a scale between 0 and 1 with the same weight (Eq. (2)). 
Here, we used a multiplicative method instead of an additive method 
because it integrates the interplay of the three components in the 
vulnerability index. For example, if a county has no fire-PM2.5 exposure, 
that county should have the least vulnerability, as there is no environ-
mental exposure and risk. However, with the additive method, the 
counties with high sensitivity and low adaptive capacity could have high 
vulnerability regardless of exposure levels, as the vulnerability is the 
sum of sensitivity, adaptive capacity, and exposure indices. We also 
conducted the same analysis with the additive method as a sensitivity 
analysis. 

Vulnerability = Exposure×Sensitivity×Adaptive capacity (2) 

We repeated the same procedures to calculate regional level CHVI 
which is based on the interagency geographic areas for wildland fire 
management made by National Interagency Fire Center (https://gacc. 
nifc.gov/) (Fig. 1). With these designations, the US is divided into 9 
distinct geographic areas with the purpose of effective incident man-
agement and mobilization of resources such as people, aircraft, and 
ground equipment. For simplicity, we merged the Northern California 
region with the Southern California region in this paper. The calculated 
CHVI can aid in the development of region-specific strategies and the 
implementation of measures to mitigate vulnerability effectively. All 
processes for developing the overall CHVI are summarized in Supple-
mentary Fig. S1. 

Note that the method adopted in this paper does not need to consider 
multicollinearity among the variables. Multicollinearity is often prob-
lematic when statistical regression models are used. In this case, mul-
ticollinearity would flip the sign of regression coefficients or inflated the 
coefficients, which weakens the statistical power of the regression 
model. Our method, however, does not use statistical regression models. 
Instead, we employ the average of standardized variables following the 
method the CDC/ATSDR SVI adopted. The advantage of this method is 
that the presence of strong correlations among variables could poten-
tially lead to an implicit weighting within an equal weighting system 
(Tate, 2013). 

For the second part of the analysis, we first examined the association 
of the level of fire-PM2.5 exposure with the adaptive capacity sub-index, 
sensitivity sub-index, and CHVI using Spearman correlation coefficients. 
In this process, we also tabulated the statistical summary (i.e., mean, 
max, min, and standard deviation) of daily fire-PM2.5 and the number of 
counties corresponding to certain daily fire-PM2.5 levels (i.e., 0.00–0.15, 
0.15–0.75, 0.75–1.50, >1.50 μg/m3) by decile for each index. We then 
investigated the inequality in the derived sub- and overall indices with 
the Gini coefficients (Gini, 1912) to understand which index is distrib-
uted more evenly or less evenly. Gini coefficients range from zero to one, 
with zero referring to perfect equality in the sub- and overall indices, 
which means the index values of all counties are the same. On the other 
hand, one indicates perfect inequality in the indices. 

Next, we calculated the impact of fire-PM2.5 on the increase in the 
annual number of days with 12-35 μg/m3 (moderate) and >35 μg/m3 (at 
or above unhealthy for sensitive groups), following the US Environ-
mental Protection Agency (EPA) Air Quality Index (AQI) categories, 
categorized by the deciles of the sub-indices and CHVI. For this, we 
separately counted the annual number of days between 12 and 35 μg/m3 

(moderate air quality days) and >35 μg/m3 (at or above unhealthy air 
quality days for sensitive groups) for both all-sources PM2.5 and all- 
sources PM2.5 excluding wildland fires. The difference between the 
two model products lies in the extent to which fire-PM2.5 contributes to 
the increase in the number of moderate and at or above unhealthy air 
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Fig. 1. The interagency geographic areas for wildland fire management made by the National Interagency Fire Center.  

Fig. 2. (a) Daily averaged all-sources PM2.5 (μg/m3) by county from 2008 to 2018, (b) Daily averaged fire-PM2.5 (μg/m3) by county from 2008 and 2018, (c) Annual 
number of days between 12 and 35 fire-PM2.5 (μg/m3), (d) Annual number of days above 35 fire-PM2.5 (μg/m3). 
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quality days/year for sensitive groups. Finally, we calculated population 
size at risk, categorized by fire-PM2.5 levels, adaptive capacity sub- 
index, sensitivity sub-index, and CHVI's decile. 

3. Results 

3.1. Spatial patterns of the calculated indices 

We estimated daily PM2.5 exposure from 2008 to 2018 using the 
CMAQ model with (i.e., all-sources-PM2.5) and without (i.e., fire-PM2.5) 
wildfires and prescribed fires. The difference between the two model 
products is the contribution of wildfires and prescribed fires to the 
ambient PM2.5 levels (i.e., fire-PM2.5). All-sources-PM2.5 (Fig. 2a) and 
fire-PM2.5 (Fig. 2b) showed different spatial patterns. All-sources-PM2.5 
exhibited higher PM2.5 concentrations in the Eastern (7.90 μg/m3) and 
Southern (7.49 μg/m3) regions, while we observed higher fire-PM2.5 
concentrations in the California (1.97 μg/m3), Northwest (1.35 μg/m3), 
and Southern (1.16 μg/m3) regions. Fig. 2c and d respectively represent 
the annual number of days between 12 and 35 μg/m3 (moderate air 
quality days) and >35 μg/m3 (at or above unhealthy air quality days for 
sensitive groups) due to wildland fire PM2.5. The annual number of days 
between 12 and 35 μg/m3 (Fig. 2c) tend to show a similar spatial pattern 
with fire-PM2.5 concentrations (Fig. 2b). On the other hand, we observed 
a distinct spatial pattern in the annual number of days with fire-PM2.5 
>35 μg/m3 (Fig. 2d). Most counties having a high number of days >35 
μg/m3 were concentrated in the California (3.62 days/year) and 
Northwest (1.88 days/year) regions. More details on the average con-
centration levels and the number of days between 12 and 35 μg/m3 and 
>35 μg/m3 by region can be found in Supplementary Table S6. 

We separately calculated adaptive capacity (Fig. 3a) and sensitivity 

(Fig. 3b) sub-indices. Note that a low value on the adaptive capacity sub- 
index implies a strong adaptive capacity, while a high value indicates a 
weak adaptive capacity. Overall, we observed higher adaptive capacity 
sub-index values in the Southwest (0.49) and Southern (0.43) regions 
compared to the Eastern (0.25), Northern Rockies (0.26), and Rocky 
Mountain (0.28) regions. The spatial pattern of the sensitivity sub-index 
differed from the adaptive capacity sub-index. The Southern (0.52) re-
gion tended to have higher sensitivity sub-index values than other re-
gions. We especially observed higher sensitivity in the states of 
Mississippi, Louisiana, Alabama, Oklahoma, and West Virginia. For 
CHVI, we found two clusters (Fig. 3c). One is in the Southern (0.24) 
region covering Georgia, Alabama, Mississippi, Louisiana, and Okla-
homa. The other is in the Northwest (0.16) and California (0.18) regions 
covering Washington, Oregon, California, and Idaho. Readers can find 
more information on descriptive summaries of sensitivity and adaptive 
capacity sub-indices and CHVI by region in Supplementary Table S7. 

As a sensitivity analysis, we also tested the additive method to 
examine if there is a large difference between the multiplicative method 
and additive method. The result shows that there were no large differ-
ences in high vulnerability areas we are interested in within this paper 
(Supplementary Figs. S2 and S3). However, there were significant dif-
ferences in low vulnerability areas. The differences in low vulnerability 
areas may result from the different methods we used. The multiplicative 
method represents areas with no exposure as zero, while the additive 
method represents the same areas with the sum of the adaptive capacity 
sub-index and sensitivity sub-index. For more information, we also 
compared the top one hundred most and least vulnerable counties using 
both multiplicative and additive methods, respectively. Results show 
that 75 out of the top 100 most vulnerable counties and 58 out of the top 
100 least vulnerable counties were consistently identified by both 

Fig. 3. Sub- and overall indices classified into five categories using the natural Jenks method.  
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methods (Supplementary Tables S8-S11). 
There was substantial variation within the US for the vulnerability 

index, which we show for eight regions where we separately calculated 
CHVI for each region (Fig. 4). Note that vulnerability index is a relative 
value that is not directly comparable between regions in Fig. 4. In other 
words, identical values in two distinct regions do not necessarily indi-
cate equivalent levels of vulnerability as we have independently 
computed the vulnerability index for each region. We have thus used 
different breakpoints for each region which effectively represent the 
spatial patterns of vulnerability. Vulnerable areas that emerge include 
the southwestern and northeastern part of the Northwest region; west-
ern part of the Northern Rockies region; southern part of the Eastern 
region; northern and middle part of the California region; northwestern 
part of the Great basin region; northern and southeastern parts of the 
Rocky Mountain region; central part of the Southwest region; and cen-
tral part of the Southern region. 

3.2. Associations between exposure and the calculated indices and 
inequality in the indices 

We investigated the relationships between fire-PM2.5 exposure and 
the calculated sub- and overall indices (i.e., adaptive capacity, sensi-
tivity, and CHVI) using Spearman correlation coefficient. All of the 
indices were significantly associated with fire-PM2.5 exposure. The 
adaptive capacity sub-index (r = 0.45, 95 % CI: 0.41–0.48), the sensi-
tivity sub-index (r = 0.47, 95 % CI: 0.45–0.50), and the CHVI (r = 0.87, 
95 % CI: 0.86–0.88) were all positively associated with fire-PM2.5 
exposure. This suggests that counties with lower adaptive capacity 
(higher adaptive capacity sub-index), higher sensitivity, and higher 
vulnerability tend to have higher fire-PM2.5 exposure. Figures on the 

relationships between exposure/CHVI and each sensitivity/adaptive 
capacity variable are in Supplementary Figs. S4 through S7. 

We also tabulated the statistical summary of daily fire-PM2.5 expo-
sures by each index's decile (Supplementary Table S12). We overall 
observed that the counties with higher adaptive capacity (lower adap-
tive capacity sub-index), lower sensitivity, and lower vulnerability 
tended to have lower fire-PM2.5 exposure. In addition, we found that a 
higher percentage of counties were categorized into the highest daily 
fire-PM2.5 category (>1.50 μg/m3) when the adaptive capacity is low 
(when the adaptive capacity sub-index is high), sensitivity is high, and 
vulnerability is high. Here, unlike the sensitivity and adaptive capacity 
sub-indices, the vulnerability index was based on the exposure, which in 
turn, makes the association between them strong by the study design. A 
more detailed interpretation of this table can be found in Supplementary 
Material. In addition, we checked the inequality of the derived indices 
with Gini coefficients. Results show that the exposure sub-index (Gini 
coefficients: 0.35) and CHVI (0.54) were not evenly distributed 
compared to the adaptive capacity (0.23) and sensitivity sub-index 
(0.18). 

3.3. Increases in unhealthy air quality days due to fire-PM2.5 

We separately counted the annual number of days between 12 and 
35 μg/m3 (moderate air quality days) and >35 μg/m3 (at or above un-
healthy air quality days for sensitive groups) with both all-sources PM2.5 
and all-sources PM2.5 except wildland fires, categorized by each index's 
decile. The difference between the two model products is the contribu-
tion of fire-PM2.5 to the increases in the number of moderate and at or 
above unhealthy air quality days/year for sensitive groups. 

Generally, counties with lower adaptive capacity (higher adaptive 

Fig. 4. Eight regions' community health vulnerability index classified into five categories using the natural Jenks method.  

J. Jung et al.                                                                                                                                                                                                                                     



Science of the Total Environment 906 (2024) 167834

8

capacity sub-index), higher sensitivity, and higher vulnerability tend to 
have a greater increase in the number of moderate and at or above 
unhealthy air quality days/year for sensitive groups (Fig. 5). For 
example, the increases in annual number of days between 12 and 35 μg/ 
m3 and >35 μg/m3 respectively increased from 9.6 days (1st decile) to 
20.0 days (10th decile) and from 0.5 days (1st decile) to 1.1 days (10th 
decile) with the increase in adaptive capacity sub-index. For the sensi-
tivity sub-index, we also observed the increases in the annual number of 
days between 12 and 35 μg/m3 and >35 μg/m3 increased from 9.2 days 
(1st decile) to 25.1 days (10th decile) and from 0.7 days (1st decile) to 
1.0 days (10th decile). For the CHVI, the increases in annual number of 
moderate air quality days and at or above unhealthy air quality days for 
sensitive groups respectively increased from 5.9 days (1st decile) to 32.2 
days (10th decile) and from 0.3 days (1st decile) to 2.3 days (10th 
decile). More information on the number of days between 12 and 35 μg/ 
m3 and >35 μg/m3 for all-sources PM2.5, all-sources PM2.5 without 
wildland fires, and the difference between the two data sets (impact of 
fire-PM2.5 on the increases in the number of moderate and at or above 
unhealthy air quality days/year for sensitive groups) can be found in 
Supplementary Tables S13–15. 

3.4. Population size at risk 

Fig. 6 shows the number of people at risk by daily fire-PM2.5 con-
centration and decile for multiple sub- and overall indices. Overall, 
counties with lower adaptive capacity (higher adaptive capacity sub- 
index), higher sensitivity, and higher vulnerability have small pop-
ulations compared to their counterparts. More importantly, the counties 
with lower adaptive capacity (higher adaptive capacity sub-index), 
higher sensitivity, and higher vulnerability have a higher proportion 
of high daily fire-PM2.5 concentrations (i.e., 0.75–1.50, 1.50 μg/m3). 
Approximately, 44.9 million people have the highest adaptive capacity 
(1st decile) while 14.9 million people have the lowest adaptive capacity 
(10th decile). Among the 14.9 million people with the lowest adaptive 
capacity, 2.1 million people were also exposed to high daily fire-PM2.5 

exposure (>1.50 μg/m3). For the sensitivity sub-index, 86.2 million 
people have the lowest sensitivity sub-index (1st decile) while 12.0 
million people have the highest sensitivity (10th decile). One fourth of 
the 12.0 million people also experienced high daily fire-PM2.5 exposure 
(>1.50 μg/m3). For the CHVI, 73.3 million people have the lowest 
vulnerability index (1st decile) and 11.5 million people have the highest 
vulnerability (10th decile). Seventy-five percent of 11.5 million people 
were also exposed to high daily fire-PM2.5 concentration (>1.50 μg/m3). 
More details can be found in Supplementary Table S16. As a separate 
analysis, we further detected the counties experiencing high daily fire- 
PM2.5 concentration (>1.50 μg/m3), lowest adaptive capacity (>99th 
percentile), and highest sensitivity (>99th percentile). The results show 

Fig. 5. Increases in the number of days per year between 12 and 35 μg/m3 and >35 μg/m3 by decile of adaptive capacity sub-index, sensitivity sub-index, and 
community health vulnerability index due to wildland fires. 

Fig. 6. Population size by daily fire-PM2.5 concentrations threshold and decile 
for each index (adaptive capacity, sensitivity, and community health vulnera-
bility index). 
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that a total of five counties located in Alabama (Greene, Dallas Counties) 
and West Virginia (Boone, Logan, Mingo Counties) States correspond to 
these conditions, representing the highest risk (Supplementary Fig. S8). 

4. Discussion 

This study developed a measure of county-level community vulner-
ability for fire-PM2.5 based on adaptive capacity, sensitivity, and expo-
sure at the national and regional level. This is one of several important 
extensions compared to other fire risk studies that do not focus on 
smoke/health and use CHVI broadly. We showed that the counties with 
higher daily fire-PM2.5 exposure tend to have lower adaptive capacity, 
higher sensitivity, and higher vulnerability at the county level. Our re-
sults complement previous studies that separately examined the impact 
of PM2.5 exposure (Kondo et al., 2022; Liu et al., 2015; Reid et al., 2016) 
and wildland fire smoke vulnerability (Rappold et al., 2017). These 
studies presented evidence that communities with higher PM2.5 expo-
sure and higher vulnerability could be at higher risk of health risks 
resulting in increased smoke-related mortality and morbidity. Our re-
sults further described the relationships between fire-PM2.5 exposure 
levels and adaptive capacity, sensitivity, and CHVI. We found that 
counties with high fire-PM2.5 exposure may also be at higher risk as a 
result of corresponding low adaptive capacity and high sensitivity. This 
study bolsters recommendations that have argued for a multifaceted 
approach that addresses not only exposure, but also adaptive capacity 
and sensitivity, to reducing impacts from wildland fire smoke. 

Relatedly, we discovered that counties with higher vulnerability are 
more likely to face a heightened risk of experiencing poor air quality 
during wildland fires compared to their counterparts. Previous studies 
have highlighted environmental inequality, asserting that marginalized 
communities, often characterized by low-income and minority pop-
ulations, disproportionately bear the impact of natural disasters (Cutter, 
1995; Institute of Medicine, 1999). Environmental inequality has been 
already identified in many vulnerability studies focusing on various 
environmental disasters such as heat waves (e.g., Estoque et al., 2020), 
floods (e.g., Maantay and Maroko, 2009), wildfires (e.g., Davies et al., 
2018), and hurricanes (e.g., Bodenreider et al., 2019). These studies 
generally support the concept that socially and economically vulnerable 
communities are more likely to be exposed to higher risks of environ-
mental hazards, such as air and water pollution and extreme weather 
events. Environmental inequality and environmental justice have 
recently garnered significant attention within the environmental 
discourse as efforts to mitigate the unequal distribution of exposure to 
environmental hazards (Whitehead, 2015). Multiple governments and 
agencies, including the EPA, CDC, and National Institute of Environ-
mental Health Sciences (NIEHS), persist in their efforts to address dis-
parities in environmental health through tools, collaborations, and 
public health initiatives. A vulnerability assessment could serve as an 
effective tool for identifying environmental inequality issues. 

A large number of people are likely vulnerable to impacts of wildland 
fire smoke at least along one dimension of concern: 14.9, 12.0, and 11.5 
million people have the lowest adaptive capacity (10th decile), the 
highest sensitivity (10th decile), and the highest vulnerability (10th 
decile), respectively. We showed that the spatial distribution of these 
populations was clustered: for example, five counties (total population: 
127,285) located in Alabama (Greene, Dallas Counties) and West Vir-
ginia (Boone, Logan, Mingo Counties) experienced high average daily 
fire-PM2.5 concentrations (>1.5 μg/m3) and had the lowest adaptive 
capacity (>99th percentile), and the highest sensitivity (>99th 
percentile). Furthermore, the counties with lower adaptive capacity, 
higher sensitivity, and higher vulnerability often had a higher increase 
in the number of days between 12 and 35 μg/m3 (moderate air quality 
days) and >35 μg/m3 (at or above unhealthy air quality days for sen-
sitive groups) due to fire-PM2.5 concentrations. For example, in the least 
vulnerable group (1st decile of the CHVI), fire-PM2.5-induced increases 
in the number of days between 12 and 35 μg/m3 and >35 μg/m3 were 

5.9 and 0.3 days/year, respectively. On the other hand, the most 
vulnerable group (10th decile of the CHVI) experienced substantially 
higher increases of 32.2 and 2.3 days/year, which corresponds to 
approximately 5 to 6 times more days compared to the 1st decile of the 
CHVI. 

Our results show additional vulnerable areas that were not captured 
with CHVI methods of Rappold et al. (2017). While Rappold et al. (2017) 
suggest that the Southern US had the highest vulnerability, our study 
showed two hot spots of high vulnerability: Northwestern (the North-
west and California regions) and Southern US. We suspect that this 
difference comes from at least two factors. First, while Rappold et al.'s 
(2017) vulnerability index is based on five years of data from 2008 to 
2012, our study is based on eleven years of data from 2008 to 2018. 
Recent wildfires that occurred in the Western US could have potentially 
changed this pattern. Second, we surmise that a significant difference is 
that Rappold et al. (2017) did not incorporate adaptive capacity into 
their analysis. We believe presented work advances Rappold et al.'s 
(2017) CHVI by including the adaptive capacity. The rapidly changing 
nature of wildfires in the last decade alone in the western US (Dennison 
et al., 2014; Kramer et al., 2018) suggests employing longer time series 
could elucidate significant and important differences in vulnerable 
areas. Given this trend in wildfires is likely to continue in the future 
(Neumann et al., 2021), there will be a need to continually revisit and 
update vulnerability assessments to inform public health, fire manage-
ment, and other decisions and priorities. 

Our results also align with some of Rappold et al.'s (2017) results. We 
found the western US had longer and higher smoke PM2.5 exposure 
while the Eastern US experienced shorter and lower smoke PM2.5 
exposure. Both Rappold et al. (2017) and our study observed high 
concentrations over mesic and dry mixed-conifer forested regions of 
Northern California and Pacific Northwest; within hardwood, pine and 
southern mixed forests; as well as in the wetlands across the Southeast. 
These spatial patterns are associated with the type of fires in these 
contexts: the majority of the emissions in the Southeast were smaller and 
more localized wildland fires (e.g., agricultural burning and prescribed 
burning), while wildland fires in the Western US are larger and longer 
lasting and can therefore increase the number of moderate and at or 
above unhealthy air quality days/year for sensitive groups (Rappold 
et al., 2017). This result suggests the potential benefits of applying tools 
such as prescribed burning and ecological thinning as options for man-
aging fuels in the presence of inevitable wildfires (D'Evelyn et al., 2022). 

Finally, our results support the broader literature showing the 
Southern US tends to have lower adaptive capacity to wildland fire 
smoke than the Northern US due to the distribution of race/ethnicity 
and socioeconomic status variables. Casey et al. (2017) showed similar 
spatial patterns representing higher proportions of non-White in-
dividuals, of individuals without a high school diploma, and of house-
holds below the federal poverty level in the Southern US. Jbaily et al. 
(2022) also reported that a higher proportion of non-White and low- 
income ZIP Code Tabulation Areas are concentrated in the Southern 
US. Our findings support the idea that communities with limited adap-
tive capacity should be supported in implementing protective measures 
to enhance resilience and reduce the negative health impacts of wildland 
fire smoke. These measures include both improved community fire 
mitigation practices and smoke risk communication (D'Evelyn et al., 
2022; Rappold et al., 2017; Treves et al., 2022; Van Deventer et al., 
2021; Wood et al., 2022). 

We note several limitations that can be addressed by future analyses. 
Our analysis presents a critical first step in the analysis of vulnerability 
as it relates to broader societal well-being. However, the derived indices 
were not validated in this study, as the validation process is beyond the 
current scope of our research. Future work could examine the degree to 
which CHVI, as well as its sub-indices, are associated with relevant 
health outcomes. Previous vulnerability studies have used total property 
damage or the number of deaths/illness as a proxy for vulnerability to 
validate their indices (e.g., Ortega et al., 2019; Tellman et al., 2020). For 
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our study, an ideal analysis would examine associations between the 
sub- and overall vulnerability indices and mortality or morbidity 
outcomes. 

Second, CMAQ data, similar to most models, contains inherent biases 
(see, Appel et al., 2021; Wilkins et al., 2018). As those biases impact 
CHVI, our results indicate similar findings as Rappold et al. (2017) re-
ported: 1) high biases at low PM2.5 concentrations which may come from 
too dispersive plumes and too high emission from small fires, 2) over-
estimated small fire PM2.5 concentrations across all seasons, 3) limited 
model ability which does not simulate the smoldering aspects of peat 
fires well, and 4) incomplete emission data which excluded misspecified 
emissions in the emission inventory. Wilkins et al. (2018) also pointed 
out that the CMAQ model represents a low bias at higher emissions and a 
high bias at lower emissions. The model performs better for larger 
sources, meaning that our results for areas experiencing vulnerability 
from smaller fires could be biased lower than in reality. Further, how the 
model captures plume rise and dispersion could also alter the accuracy 
of this analysis due to incorrect placement of emissions. 

Third, several uncertainties exist in the process of: 1) variable se-
lection; 2) variable weighting; 3) variable standardization; 4) vulnera-
bility calculation methodology; and 5) selecting the spatial resolution of 
variables. These and other uncertainties common in vulnerability as-
sessments are further described in Tate (2013, 2012). Finally, variables 
estimated for different years and obtained from different sources could 
contribute uncertainty in the analysis. In particular, some variables 
based on the estimates such as adult asthma, pediatric asthma, and 
COPD could have high uncertainty and error. 

5. Conclusions 

The results presented here point to at least two practical implica-
tions. As fire-PM2.5 can travel over thousands of miles and adversely 
impact people living far from the fire origins (Matz et al., 2020; Sapkota 
et al., 2005), regional maps of spatial patterns of fire-PM2.5 exposure, 
adaptive capacity, sensitivity, and vulnerability indices can provide 
critical, localized information to state and county officials. This infor-
mation may be utilized in making decisions regarding land manage-
ment, public health, occupational health, and preparedness 
interventions and provide other services to vulnerable populations. 
Second, CHVI can raise awareness about risks to public health by 
providing information about the annual average number of moderate 
and at or above unhealthy air quality days for sensitive groups at the 
county level. Knowledge about the health risk of wildfire or prescribed 
fire smoke through effective outreach and communication could be 
especially useful for counties where fire smoke is less common. Local or 
state governments could use the information for promoting evidence- 
based and culturally tailored health interventions or individual protec-
tive behaviors (e.g., using a mask, low-cost home air filters) to avoid the 
adverse impact of fire smoke. The results can help broader efforts to 
more efficiently allocate resources and reduce exposure inequities. 

Given that wildland fires and smoke are likely to continue to increase 
in the future, we would expect future increases in morbidity and mor-
tality caused by wildland fire smoke exposure without additional pre-
vention/mitigation (Neumann et al., 2021). Identifying counties that are 
more vulnerable to wildland fire smoke, and the drivers of these vul-
nerabilities, is an important step in helping researchers and practitioners 
better understand, prepare for, and respond to future wildfire events. 
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