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• Wildfiremay exacerbate health disparities
& environmental justice concerns.

• Low-cost PM2.5 sensors improve wildfire
impact assessment.

• Increases in PM2.5 correlate with wildfire
activity (within 30 km).

• Indoor increases in PM2.5 concentrations
mimic outdoor PM2.5 increase patterns.
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The increasing number and severity of wildfires is negatively impacting air quality for millions of California residents
each year. Community exposure to PM2.5 in two main population centers (San Francisco Bay area and Los Angeles
County area) was assessed using the low-cost PurpleAir sensor network for the record-setting 2020 California wildfire
season. Estimated PM2.5 concentrations in each study area were compared to census tract-level environmental justice
vulnerability indicators, including environmental, health, and demographic data. Higher PM2.5 concentrations were
positively correlated with poverty, cardiovascular emergency department visits, and housing inequities. Sensors
within 30 km of actively burning wildfires showed statistically significant increases in indoor (~800 %) and outdoor
(~540 %) PM2.5 during the fires. Results indicate that wildfire emissions may exacerbate existing health disparities as
well as the burden of pollution in disadvantaged communities, suggesting a need to improve monitoring and adaptive
capacity among vulnerable populations.
1. Introduction

Millions of wildland acres are consumed every year in the Western
United States by wildfires, which are exacerbated by global climate change
effects such as extended periods of drought and elevated surface tempera-
tures (Dennison et al., 2006, Westerling et al., 2006, Goss et al., 2020).
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Decades of fire suppression in the western US have also increased fuel
load for fires, which when combined with changing climates further exac-
erbate fire risk (Marlon et al., 2012).These wildfires cause increasing
economic and public health burdens (Kochi et al., 2012, Liu et al., 2015,
Smith, 2020). Wildfires emit both gas phase chemicals and particulate
matter (PM) into the atmosphere where local, regional, and long-range
air quality impairments have been reported (Primbs et al., 2008,
Sekimoto et al., 2018, Kang et al., 2014, Greenberg et al., 2006). The result-
ing impact of wildfire-associated fine PM (PM2.5, aerodynamic diameters
smaller than or equal to 2.5 μm) on the planet – in terms of the Earth's
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energy balance and the health of human populations – is a global environ-
mental and public health concern (Burke et al., 2021), particularly since
exposure to PM2.5 has been linked to a wide variety of acute and chronic
adverse health impacts (Xing et al., 2016, Williamson et al., 2016, Klepeis
et al., 2001, Sharma et al., 2020).

Community exposure towildfire associated PM2.5 can occur in both out-
door and indoor environments. Outdoor PM2.5 contributes to indoor PM2.5

concentrations through infiltration, and as a result, emissions of PM2.5 from
wildfires have been shown to degrade indoor air quality as well as outdoor
air quality (Liang et al., 2021, Shrestha et al., 2019). In the United States,
people spend 80–90 % of their time indoors (Dennison et al., 2006),
which elevates the importance of characterizing indoor air quality during
wildfire events, particularly because public health advisories during
periods of elevated outdoor PM2.5 concentrations encourage limiting time
outdoors even further (Black et al., 2017, Luo et al., 2019).

Another important consideration with respect to community-level im-
pacts from wildfires is the analysis of spatial trends in exposures, including
disproportionate impacts on various population groups. Currently, evi-
dence on the equity implications of wildfire exposures is mixed. A number
of recent studies have shown unequal burdens of wildfire emissions on
communities of colour and socioeconomically disadvantaged communities
(Davies et al., 2018, Masri et al., 2021), while others have found no
variation in smoke exposure by socioeconomic status (Gaither et al.,
2015) or disproportionate exposures for white, affluent populations (Bi
et al., 2020). Characterizing community-level PM2.5 exposure and vulnera-
bility during wildfire periods is critical to understanding the full extent of
wildfire impacts (Davies et al., 2018, Gaither et al., 2015). All of these
potential and established inequities highlight the importance of character-
izing the populations most vulnerable to wildfires, particularly within the
context of the growing list of adverse chronic and acute health effects asso-
ciated with wildfire associated PM2.5. There is well-established evidence of
the impacts of wildfire smoke exposure on respiratory morbidity, such as
exacerbations of asthma and chronic obstructive pulmonary disease (Liu
et al., 2015; Lassman et al., 2017; Evans et al., 2021), including differential
impacts among low-income populations (Jerrett et al., 2005). Recent stud-
ies have also quantified the relationship between short-term exposure to
wildfire smoke and mortality (Bailey and Gatrell, 1995) and estimated
health burdens resulting from wildfire events by applying PM2.5 dose-
response functions to calculate attributable premature deaths (Zhang
et al., 2021). The latter studies have found that exposure to PM2.5 due to
wildfires has substantial impacts on mortality and resulting economic
burdens. A short-term analysis examining specific wildfire events in the
fall of 2020 in Washington state found that each week of increased PM2.5

exposure from smoke was associated with almost 90 premature deaths in
the region (Zhang et al., 2021).

In recent years, the use of low-cost air sensors has allowed for greater
spatial resolution of PM2.5 measurements (Bi et al., 2020, Feenstra et al.,
2019, Malings et al., 2020, Snyder et al., 2013). A number of low-cost sen-
sor networks are now online with publicly accessible data, such as the
PurpleAir network used for this study (Feenstra et al., 2019, Magi et al.,
2020). The PurpleAir sensor network is currently being reviewed by the
US Environmental Protection Agency (EPA) for its reliability to comple-
ment EPA's existing regulated air quality monitoring methods (Federal
Equivalent Method and Federal Reference Method) (Holder et al., 2020).
The addition of the PurpleAir sensor network to the existing EPA national
air monitoring network not only increases spatial resolution, but also en-
ables community-specific air quality assessment (Bi et al., 2020, Holder
et al., 2020, Kelp et al., 2022).

Prior studies have used low-cost sensors as a tool to investigate dis-
parities in air quality at a community level, demonstrating the value of
dense sensor networks (Tanzer et al., 2019). The distribution of com-
mercial low-cost sensors is primarily driven by consumer demand for
personal air quality information, not by controlled scientific interest.
However, while affordable compared to state-of-the-art scientific instru-
ments, commercially available low-cost sensors still cost hundreds of
dollars, which presents a potential barrier to lower-income individuals,
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families, and communities. This issue leads to a gap in available scien-
tific data, despite growing popularity among both consumers and regu-
latory agencies.

Several studies have used the PurpleAir sensor network to measure
wildfire emissions (Liang et al., 2021, Aguilera et al., 2021), however, the
use of this sensor network has not yet been evaluated in the context of com-
munity exposure to PM2.5 during regional wildfire events. This study aims
to use the PurpleAir sensor network to evaluate both indoor and outdoor
PM2.5 concentrations during California wildfires in 2020 and characterize
associated public health and equity implications. We identified PurpleAir
sensors that were online and recording data near two population centers
– the San Francisco Bay area (SFB), and the Los Angeles County area
(LA), encompassing a total population of 20 million people – in proximity
to several of the largest wildfires during California's 2020 wildfire season.
To perform the exposure analysis, we located indoor and outdoor sensors
within a 30 km radius of actively burning wildfires and evaluated the im-
pact of elevated outdoor PM2.5 on indoor air quality. We used ordinary
kriging to interpolate PM2.5 across the PurpleAir network, generating esti-
mates over the wildfire periods for census tracts in our study areas. We
then utilized census tract-level environmental justice vulnerability data
from the California Office of Environmental Health Hazard Assessment's
(OEHHA) CalEnviroScreen 4.0 tool to quantify the correlations between
wildfire PM2.5 concentrations and several sociodemographic and environ-
mental metrics (August et al., 2021). CalEnviroScreen integrates environ-
mental, economic, and health data to generate a score that can be used to
identify cumulative environmental burdens and vulnerability for each
census tract. The overall CalEnviroScreen score is the product of pollu-
tion burden and population characteristics and ranges from 0 to 100,
with 0 being the least vulnerable and 100 the most. Per California
Senate Bill 535, communities above the 75th score percentile are desig-
nated as a “disadvantaged community,” eligible for state adaptation
funds (OEHHA, 2022). Overall, this study fills an existing knowledge
gap by demonstrating the utility of the sensor network in characterizing
community exposure to PM2.5 during active wildfires and presenting
associated equity implications.

2. Methods

2.1. Identification of CA wildfires

The California fire season of 2020 was the most destructive season on
record, with >4.3 million acres burned (Spiller et al., 2021). In 2020
alone, ten wildfires burned over 100,000 acres (Table S1 and Fig. S1).
These wildfires were those considered in this study. A search of the
PurpleAir network revealed sensors within 30 km of these ten fire perime-
ters. To perform the exposure analysis, we located indoor and outdoor sen-
sors within a 30 km radius of actively burning wildfire perimeters and
evaluated the impact of elevated outdoor PM2.5 on indoor air quality. The
30 km radius was chosen as it adequately covered the major population
centers and avoided excluding clusters of PurpleAir sensors. Three of
these fires, the LNU Lightning Complex, SCU Lightning Complex (Del
Puerto fire), and Bobcat fires, had indoor and outdoor sensors within the
same communities active for a period of 30 days before the fires broke
out through 30 days after full containment of each fire (as declared by the
agencies in charge of fire response). Indoor sensors found online during
the same periods before, during, and after the fires were paired to outdoor
sensors within 10 km for comparison.

This study focused on twomajormetropolitan areas in California: SFB is
a 40,384 km2 area that includes the San Francisco, Santa Rosa, Sacramento,
and San Jose; and LA is a 13,000 km2 area covering Los Angeles County and
parts of Ventura and Orange Counties (Fig. 1). These areas were selected
due to the presence of large wildfires (>100,000 acres), large population
(>1 million), and a high number of PurpleAir sensors (>100). For the
purposes of this analysis, SFB included 2127 census tracts and a population
of 9.6 million people, while LA included 2874 census tracts and a popula-
tion of 12.1 million people.



Fig. 1.Maps of fires, study areas, and sensor locations. (A) Location of wildfires >100,000 acres in California (area of fires in orange). Census tracts are colored according the
CalEnviroScreen score. (B) Table listing names of each fire alongside the total number of acres burned with numbers corresponding to map locations. Maps of San Francisco
Bay Area (C) and Los Angeles Area (D), where study was focused showing PurpleAir sensors (purple dots), weather stations (white triangles), and wildfires within the area.
Panels E and F show the number of PurpleAir sensors in each study area, binned by CalEnviroScreen score percentile.
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2.2. PurpleAir sensor data quality

2.2.1. Quality assurance/quality control (QA/QC) processes
Hourly average data from both the A and B channels of PurpleAir sensors

located within 30 km of each fire were downloaded for a period from 30
days prior to the start of each fire through a period of 30 days beyond the
containment of the fire. PM2.5 data between channel A and channel B were
compared for quality assurance per PurpleAir QA/QC guidelines previously
detailed in Connolly et al. (2022). PurpleAir guidelines indicate that the
3

difference between the two channel measurements should not be greater
than ±10 μg/m3 (for measurements <100 μg/m3) or greater than ±10 %
of the measurement (for measurements >100 μg/m3). For measurements
found outside those guidelines, the data pointswere disqualified for analysis.
Sensors with >25 % of the total data failing to pass QA/QC were removed
from further analysis. After completing the above QA/QC steps, the average
PM2.5measurements of channels A andBwere calibrated using the following
wildfire correction equation from the US EPA, which calibrates PurpleAir
data against federal reference methods (Holder et al., 2020).
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Sensors that may have potentially beenmislabeled in terms of indoor vs
outdoor locations were evaluated by plotting temperature against date.
Outdoor sensors are expected to have normal daily temperature and rela-
tive humidity fluctuations; sensors with <10 °F of temperature fluctuation
within one day the study period were suspected to have been installed in-
doors and were subsequently disqualified from analysis. Likewise, indoor
sensors fluctuations in temperature and relative humidity were compared
to nearby outdoor sensors (Liu et al., 2022). Only one indoor sensor was
found to have statistically non-different data with the nearest outdoor sen-
sor, whichwas considered to either be placed outdoors or near an openwin-
dow and was thus disqualified from analysis. Lastly, any observations that
corresponded to temperatures outside the PurpleAir acceptable range of
−40 °F< Temperature < 200 °F (−40–93C°) and/or 0% < relative humid-
ity (RH) < 100 % were removed.

After completing the above QA/QC steps, the average PM2.5 measure-
ments of channels A and B were calibrated using the following correction
equation from the US EPA (Evans et al., 2021):

PM2:5 ¼ 0:52 ∗ PAcf1 � 0:086 ∗ RHþ 5:75 if PAcf1 ≤ 343 μg=m3

0:46 ∗ PAcf1 þ 3:93 ∗ 10�4 ∗ PA2
cf1 þ 2:97 if PAcf1 > 343 μg=m3

(
(1)

where PAcf1 denotes the PurpleAir higher correction factor data averaged
from the A and B channels and RH is in percentage units. The final dataset
in the spatial analysis included 792 PurpleAir (12 indoor) sensors in SFB
and 297 (3 indoor) sensors in LA.

2.2.2. Wildfire timeframes
Wildfires vary in their size, duration, and location, and they all have

different periods of activity throughout their timelines. To differentiate be-
tween different phases of activity for each wildfire, we define the period
when the fire is actively expanding its perimeter (or footprint) as the
Early-fire period for this study. The period of time between~70% contain-
ment –which corresponds with little to no expansion of the perimeter – and
full containment is defined here as the Late-fire period. Data from 30 days
before fires broke out are defined as Pre-fire, and data during the 30-day
period after full containment of the fires (as reported by the fire-fighting
agencies for each fire) are defined as Post-fire. Dates for each of the fires
considered for this project can be found on Table S1.

2.2.3. Statistical analysis
Themean indoor and outdoor PM2.5measurements and indoor/outdoor

(I/O) ratios for each of the fire periods were compared through one-way
ANOVA on Ranks, with the Dunn's method for pairwise comparisons ap-
plied due to the non-normal distribution of the data (Wigtil et al., 2016).
When comparing PM2.5 measurements to variables in the CalEnviroScreen
dataset, the Pearson correlation coefficient (pcorr) and associated p-values
were calculated. Statistical significance for all statistical tests was estab-
lished as p-value ≤0.05.

2.3. PM2.5 exposure modeling

At the time of study, sensor coverage in both SFB and LA was incom-
plete (Fig. S2). Therefore, in order to generate PM2.5 estimates for all census
tracts in both study areas, a previously established approach was used to in-
terpolate PM2.5 estimates using ordinary kriging (Ravazzani et al., 2020,
Cascio, 2018). The geometricmean PM2.5was calculated and used to derive
analytical semivariograms for the PurpleAir networkwith a combination of
automatic fitting andmanual adjustments to individual parameters (Fig. 2).
The semivariogram quantifies andmodels the degree of spatial autocorrela-
tion in a spatial dataset. In this study, we consider the spatial autocorrela-
tion between PM2.5 measurements in the PurpleAir data. Under the
assumption that the theoretical semivariogram for PM2.5 remained constant
within each time period, hourly estimates of PM2.5 for each census tract
polygon were generated using block kriging (Reid et al., 2016). Two
algorithms were evaluated: (1) standard ordinary kriging, and (2) the
Win-OK algorithm, which restricts interpolator sensors to those upwind of
4

the point of interest (Doubleday et al., 2020). These two algorithms were
compared using leave-one-out cross-validation. Meteorological data were
downloaded using the worldmet package in R, which sources fromweather
stationsmanaged by the National Oceanic and Atmospheric Administration
(Liu et al., 2020). Hourly wind directions were interpolated from weather
stations in the study area using inverse distance weighting (Matz et al.,
2020). In order to reduce uncertainty during model validation, standard
ordinary kriging was also validated with 10-fold cross validation.

Table S2 and Fig. S3 summarize the results of 10-fold cross validation in
the PurpleAir dataset.We found excellent agreement between predicted and
observed results, with mean out-of-sample (OOS) cross validation R2 values
ranging from 0.78 to 0.91 depending on the study area and timeframe.
Higher R2 statistics corresponded to denser networks of sensors and sensors
with low R2 values in both study areas were found in areas with less sensor
coverage. Regardless of the timeframe, a small but statistically significant
difference was observed in the OOS R2 (SFB: 0.82, LA: 0.77, p - value
<0.05). Root mean squared error (RMSE) values ranged from 1.21 to 7.24.
RMSE values normalized to geometric means ranged from 0.27 to 0.33 in
SFB and from 0.23 to 0.28 in LA. The OOS cross validation R2 values during
Early- and Late-fire periods exceeded those reported by other fire-specific
studies, whereas RMSE values were comparable to existing literature
(Table S2), showing strongmodel performance (Wang et al., 2021). Normal-
ization of RMSE over geometric mean PM2.5 resulted in error levels consis-
tent within each region, as well as with other studies assessing PurpleAir
sensors (Holder et al., 2020). During Post-fire periods with no large active
fires, OOS cross validation R2 values were greater than those reported by
studies investigating ground-level measurements using traditional instru-
ments, and were comparable to other studies analyzing the PurpleAir
network in California (Wang et al., 2021, Kirk et al., 2018).

2.4. Environmental justice vulnerability assessment

To investigate the relationship between spatial environmental justice
vulnerability and PM2.5 concentrations before, during, and after wildfires,
modeled PM2.5 data were compared to indicators used in OEHHA's
CalEnviroScreen 4.0 tool (see the CalEnviroScreen report for detailedmeth-
odology) (OEHHA, 2022). CalEnviroScreen is a mapping tool used to assess
cumulative environmental impacts and population vulnerability in Califor-
nia communities at the census tract level; version 4.0 contains data from
2015 to 2019 (OEHHA, 2022). The overall score, which ranges from 0 to
100, is the product of two indices: a pollution burden index and a popula-
tion characteristics index, generated by regularly updated data on 21
indicators. A higher score corresponds to greater environmental justice
vulnerability. To evaluate the relationship betweenmodeled PM2.5 and var-
iables within the CalEnviroScreen dataset, modeled PM2.5 estimates were
correlated with CalEnviroScreen percentile-based variables that pertain to
environmental pollution (annual PM2.5, ozone, diesel PM2.5, pesticide
levels, toxic releases, road traffic, drinking water contamination, lead risk,
cleanup, groundwater threats, hazardous waste, impure water bodies, and
solid waste), health (emergency department (ED) visits for asthma and car-
diovascular disease (CVD), and low birth weight) and social factors (educa-
tion attainment, linguistic isolation, poverty, unemployment, and housing
burden). Though not included in score calculations, the CalEnviroScreen
dataset also includes demographic variables sourced from the US census re-
lating to age (percentages of population under 10, between 10 and 64, and
over 65), as well as race and ethnicity (percentages of population classified
as Hispanic, White, African American, Asian American, Pacific Islander,
and Other/Multiracial).

3. Results

3.1. PM2.5 measurements

Fig. 1 summarizes the spatial characteristics of the study areas in-
cluding the distribution of PurpleAir sensors, location of wildfires, and
CalEnviroScreen score percentiles for the two study areas (Fig. 1a and



Fig. 2. Spatial distribution ofmean PM2.5 concentrations in the study areas. Geometricmean PM2.5 and summary statistics of each area in each period in SFB area (A1-A4) and
LA area (B1-B4). Census tracts with areas>100 km2 are outlined in dark green. Thefilled in area represents the area withmodeled exposure, defined by the convex hull of the
PurpleAir network.
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b). Fig. 1c and d illustrate the distribution of PurpleAir sensors by
CalEnviroScreen score percentile. A total of 782 sensors with usable data
were identified in the SFB area during two major wildfires, the SCU and
LNU complex fires that impacted the area from August 16th through
October 2nd, 2020 (Table S1, Fig. S1). Census tracts in the lowest 25th
score percentile, which indicate lower vulnerability to environmental
5

health impacts, represent 55 % of all census tracts in the SFB study area
and contain 81 % of the PurpleAir sensors. Disadvantaged communities
represent 10 % of all census tracts in the SFB study area and contained
only 5 % of all sensors. The LA area had 302 sensors with usable data dur-
ing one major wildfire, the Bobcat Fire, which was active in the area from
September 6th throughDecember 18th, 2020. Disadvantaged communities
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represented 41 % of all census tracts in the LA study area and contained
19 % of all sensors. In both study areas, disadvantaged communities had
lower levels of sensor coverage, and were consequently subject to higher
levels of uncertainty in the census-tract level modeled PM2.5 estimates.
This observation is consistent with recent findings that concentration-
response functions between PM2.5 exposure and mortality, which are
currently used by US EPA to estimate benefits of air pollution policies, do
not sufficiently represent the health effects of air pollution on disadvan-
taged communities (Connolly et al., 2022).

For comparative analysis, PM2.5 measurements of Pre-fire, Early-fire,
Late-fire, and Post-fire periods were statistically compared. Arithmetic
mean (referred to simply as mean hereinafter) and geometricmean concen-
trations (both presented due to skewed PM2.5 concentrations during wild-
fire events), as well as standard deviations (SD) and interquartile ranges
(IQR) across the SFB and LA study areas during the four established time
periods are summarized in Table 1. Across time periods in the SFB area,
the PM2.5 geometric mean increased fivefold from 4 μg/m3 to 20 μg/m3

between Pre-fire and Early-fire periods. During the Late-fire period, it de-
creased to 8 μg/m3. The Post-fire PM2.5 geometric mean in the SFB area
was 9 μg/m3. In the LA area, between the Pre-fire period and Early-fire
period, the PM2.5 geometric mean increased from 10 μg/m3 to 16 μg/m3.
During the Late- and Post-fire periods, it was 10 μg/m3 and 9 μg/m3, respec-
tively. It is hypothesized that these decreases may be due to a combination
of reduction in size of the fires and of a gradual change from a flaming to a
smoldering fire regime. However, due to a lack of data, this hypothesis
cannot be tested in the present study.

Fig. 2 presents modeled spatial variations of PM2.5 during the four
fire periods, which demonstrates how different communities in the
same region can experience differential impacts from regional wildfires.
During the Early-fire period in the SFB area when PM2.5 peaked, the
geometric mean concentrations ranged from 12 μg/m3 to 33 μg/m3 in
individual census tracts, a nearly three-fold increase between census
tracts within 50 km of one another. In the LA area, PM2.5 similarly
peaked during the Early-fire period, although at lower levels compared
to the SFB area. During this period, the PM2.5 geometric mean ranged
from 13 μg/m3 to 18 μg/m3.

Modeled PM2.5 estimates were correlated with CalEnviroScreen
percentile-based variables that pertain to environmental pollution, health,
and social factors. Fig. 3 illustrates the magnitude and significance of the
Pearson correlations between estimated PM2.5 concentrations and all vari-
ables in the CalEnviroScreen dataset in both study areas across the four
time periods. In the SFB area, notable findings include statistically signifi-
cant correlations between PM2.5 exposures and CVD ED visits in all four
periods, as well as significant correlations between unemployment and
PM2.5 during the Early-, Late-, and Post-fire periods. Asthma ED visits in
the SFB area were positively correlated with PM2.5, though only signifi-
cantly during the Post-fire period.

Environmental justice-related disparities were more pronounced in the
LA area, where disadvantaged communities represented 41 % of all census
tracts. During the Early- and Late-fire periods, significant positive correla-
tions were observed for several environmental pollution variables, includ-
ing lead risk and toxic releases. Like in the SFB area, positive correlations
Table 1
Table of fire statistics. Summary statistics of PM2.5 concentrations in each study area by
mean and interquartile ranges (IQRs). The rightmost column describes the percentage of
for at least one day during a given period.

Study area Fire period Arithmetic mean PM2.5 (SD) (μg/m3) G

SFB

Pre-fire (7/16/20–8/15/20) 5 (2) 4
Early-fire (8/16/20–9/17/20) 29 (25) 20
Late-fire (9/18/20–10/2/20) 12 (14) 8
Post-fire (10/2/20–11/2/20) 11 (9) 9

LA

Pre-fire (8/6/20–9/6/20) 11 (5) 10
Early-fire (9/6/20–11/6/20) 18 (9) 16
Late-fire (11/7/20–12/18/20) 11 (6) 10
Post-fire (12/18/20–1/18/21) 11 (8) 9
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were observed between CVD and asthma ED visits and PM2.5, though
both correlations were only significant during the Late- and Post-fire
periods. Numerous correlations between social factors and PM2.5 were
observed during multiple time periods in the LA area, including education,
linguistic isolation, poverty, unemployment, and housing burden. Fig. 3
also shows that areas exposed to higher levels of PM2.5 tended to be non-
white, with higher levels of PM2.5 negatively correlatedwith the percentage
of non-Hispanic white population. Of the other racial/ethnic groups,
Hispanic percent population had the most consistent positive correlations
with PM2.5 levels in the LA area, followed by African American.

3.2. Influence of outdoor air quality on indoor PM2.5

To fully characterize exposures to wildfire smoke, PM2.5 concentrations
in indoor environments were also examined. Only 15 indoor PurpleAir
sensors (12 in the SFB area, and 3 in the LA area) were found with data
that passed QA/QC during the study periods. These indoor sensors were
matched to nearby (within 10 km) outdoor PurpleAir sensors. Temporal
analysis of indoor and outdoor PurpleAir sensor data show that indoor
PM2.5 mimicked patterns of outdoor PM2.5 during the different periods of
the wildfires (Fig. 4). Analysis of the data revealed statistically significant
increases in the mean of indoor PM2.5 concentrations, ~800 % (Early-
fire) and ~300 % (Late-fire), and outdoor PM2.5 concentrations, ~540 %
(Early-fire) and ~200 % (Late-fire) as compared to Pre-fire concentrations
(Fig. 5, Table S3, and Fig. S4). These data align with another wildfire study
using PurpleAir sensors which indicate elevated indoor concentrations of
PM2.5 when people stay indoors (Liang et al., 2021). In the SFB area, both
indoor and outdoor PM2.5 concentrations remained elevated after full
containment of the SCU and LNU fires (Fig. 4a, b, and c), whichmay reflect
the impact from several smaller regional fires still burning in the Northern
and Central California areas. In the LA area (Fig. 4d, e, and f), elevated
outdoor PM2.5 concentrations before the outbreak of the Bobcat fire were
possibly the result of smaller wildfires burning in the Southern California
area during that time. Analysis of the I/O ratio of mean PM2.5 concentra-
tions (Fig. 5c and d) shows differences in indoor PM2.5 that could either
be due to intrusion from outdoor PM2.5 levels, and/or from increased
indoor activity. Overall, the small number of available indoor sensors in
both study areas (only 15 in total, and only three in the LA area) limits
the ability to draw conclusions regarding the cause of the observed elevated
increases of indoor PM2.5 during the wildfire study periods.

4. Discussion

4.1. Wildfire impacts on PM2.5 concentrations

As shown in Fig. 2, the modeled PM2.5 variations demonstrate how dif-
ferent communities in the same region can experience differential impacts
from regional wildfires. Local topography and microclimates likely influ-
enced PM2.5 transport throughout impacted areas. Higher PM2.5 concentra-
tions in the SFB area compared to the LA area were likely due to the two
large fires in the SFB area, as opposed to the single fire in the LA area. As
shown in Fig. 1b, the two wildfires in the SFB area collectively burned
fire period, including arithmetic mean and standard deviation (SD), and geometric
census tracts that have exceeded the EPA 24-h PM2.5 exposure standard of 35 μg/m3

eometric mean PM2.5 (IQR) (μg/m3) Percent of census tracts exceeding 35 μg/m3 (%)

(3) 0
(25) 100

(14) 99
(9) 53
(6) 3
(10) 53
(10) 0

(9) 12



Fig. 3.Correlationmatrix between PM2.5 concentrations duringwildfires and CalEnviroScreen scores. Correlations in the SFB area (left-A panels) and LA area (right-B panels)
between mean PM2.5 concentrations during different fire periods and social, environmental, and demographic factors in CalEnvironScreen dataset (*= pcorr < 0.05; **: pcorr
< 0.01; ***: pcorr < 0.001). Positive correlations are scaled in red, while negative correlations are scaled in blue.
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758,844 acres of land over six weeks, compared to the Bobcat fire burning
115,997 acres of land over three months in the LA area (Table S1 and
Fig. S1).
7

The highest PM2.5 concentrations were found in both study areas during
the Early-fire period compared to other time periods and were statistically
significantly higher than during the Pre-fire period (p-value <0.05). The



Fig. 4. Time series of PM2.5 measurements of indoor (blue) and outdoor (red) PurpleAir sensors for the San Francisco Bay area (4A, 4B and 4C), and the Los Angeles County
area (4D, 4E and 4F). The early stage of the active fire period is indicated with a dark grey background, while the late stage of the active fire period is designated with a light
grey background. Gaps in data represent time periods with no recorded data, likely due to power outages instituted by power company during fires, or periods with no
internet access.
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greatest increases occurred in the SFB area during the Early-fire period,
when two large wildfires were contributing to PM2.5. During the Early-
fire period, 100 % of census tracts in the SFB area (with a population of
9.6 million people) were exposed to PM2.5 concentrations exceeding the
Fig. 5. Plots showing themean (±1 SE) hourly PM2.5 concentration (μg/m3) for indoor (s
the Los Angeles County are (5B). Statistically significance changes (p-value ≤0.05) fr
Outdoor sensor means that are statistically different from pre-fire means are indicated
in box plots for the San Francisco Bar area (5C) and Los Angeles area (5D) fires. Boxes
by the solid line in the box. Whiskers represent the standard deviation and the 95th per
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EPA 24-h PM2.5 National Ambient Air Quality Standard (NAAQS) of
35 μg/m3 over at least one 24-h period, compared to 0 % of census tracts
in the Pre-fire period. Half of the census tracts in the SFB area (covering a
population of 7 million people) exceeded the EPA 24-h standard at least
olid bars) and outdoor (striped bars) sensors for the San Francisco Bay area (5A) and
om the pre-fire period are indicated with (*) for both indoor and outdoor sensors.
with (#). The indoor/outdoor ratios for sensors in the same community are shown
represents the interquartile of PM2.5 measurements with the median represented
centile shown as dots outside the whiskers.



A.L. Kramer et al. Science of the Total Environment 856 (2023) 159218
seven times throughout the wildfires. During the Early-fire period, the
PurpleAir network recorded over 84 million person-days of exposure,
calculated by multiplying the population exposed by number of days of
exposure to PM2.5 concentrations above the NAAQS. In the LA area during
the Early-fire period, 53 % of census tracts, representing a population of
6.5 million people, exceeded PM2.5 NAAQS over at least one 24-h period,
compared to 3 % of LA area census tracts in the Pre-fire period. Half of
these census tracts (covering 3.2 million people) exceeded the standard
three ormore times (Table 1), recording 19million person-days of exposure
(Fig. S5). Apart from a small handful of census tracts in the LA area, most
census tracts in the area did not exceed the EPA standard prior to the fire
(Table 1). After the Early-fire period, both the number of census tracts
and the number of days for each census tract exceeding the EPA standard
declined, with more pronounced decreases in the LA area. Nevertheless,
even one month after wildfire containment, air quality in the SFB area in
over half of census tracts continued to exceed EPA standards. It should be
noted that PurpleAir sensors are not designed to monitor compliance.
Nevertheless, we found that our modeled PM2.5 estimates correlated very
well with EPA monitors (r=0.92). Since our modeled data underestimate
EPAmeasurements by about 30%, we can consider our exposure estimates
conservative.

The Pre-fire PM2.5 levels and spatial distribution in LAwere unexpected,
given that regional PM2.5 levels in California (1) tend to be lower during the
summer compared to winter, and (2) tend to exhibit spatial patterns more
similar to that of the Post-fire period compared to the Pre-fire period
(Fig. 2) (Keeley and Syphard, 2021). Shortly before the Bobcat fire, a
smaller fire known as the Apple fire ignited east of the study area, likely
affecting background PM2.5 levels. To evaluate this hypothesis, the spatial
distribution of PM2.5 in the PurpleAir network between 2018 and 2019
was compared to the 2020measurements. Of the three years with adequate
PurpleAir data in LA, records show that only 2019 did not have an active
wildfire between July 16 and August 15, and the spatial distribution of
PM2.5 differed between 2019 and the two years with active wildfires,
i.e., 2018 and 2020 (Fig. S2). Therefore, PM2.5 measurements in LA during
themonth before the Bobcatfire should not be interpreted as representative
of background levels, as these Pre-fire PM2.5 measurements likely captured
the effect of the Apple fire.

4.2. Considerations for public health and equity

We explored the implications of wildfire PM2.5 exposures at the census
tract level. Although the correlations between PM2.5 concentrations and
environmental justice indicators do not characterize the full extent of
disparities in air pollution exposures between various population groups
during wildfires, this analysis identifies several disparities relating to envi-
ronmental pollution, health, and sociodemographic characteristics in both
study areas during wildfire episodes. Notably, in the LA area, statistically
significant positive correlations were observed during the Bobcat wildfire
between PM2.5 levels and the overall CalEnviroScreen score, indicating
that wildfire associated PM2.5 exposures were occurring in communities
already determined to be vulnerable according to environmental justice in-
dicators (Fig. 3). This observation takes place despite the fact that wildfires
in LA, including the Bobcat fire, tend to occur around higher income areas
(Matz et al., 2020). Communities affected by environmental justice issues
in LA tend to be in denser, more urban parts of the metropolitan areas,
often far from thewildland-urban interface. However, thefindings reported
in this study suggest that increases in PM2.5 exposures during wildfires are
not isolated to the communities near the fire perimeter.

Although correlations with the overall score were not statistically signif-
icant in the SFB area, investigation of the correlations between PM2.5 and
individual variables revealed striking disparities. Correlations between
PM2.5 and CVD-related ED visits during the wildfire periods indicated
that wildfire smoke had the potential to exacerbate existing cardiovascular
vulnerability, considering the established adverse impact of PM2.5 exposure
on CVD under non-wildfire conditions (Fig. 3) (Evans et al., 2021). In both
study areas, strong associations were observed between pollution burdens
9

(such as toxic releases and drinkingwater contamination) and PM2.5 during
the wildfire periods, indicating disparities between populations (Fig. 3).

Ultimately, the census tract correlations shown between PM2.5 levels
and preexisting social, environmental, and health inequities provide evi-
dence that the health burdens in underserved communities have the poten-
tial to be worsened by wildfire emissions. Disparities in measures such as
English literacy and education attainment underscore the need for simple
community-focusedmessaging andmulti-language resources available dur-
ingwildfire events (Fig. 3). In the LA area, the positive correlations between
wildfire PM2.5 and housing burden suggest that those affected by poorer air
quality during the Bobcat fire face relatively higher housing-related costs,
which may result in less adaptive capacity, including the inability to afford
(or legal right to install) proper air filtration equipment, HVAC systems, or
other measures that would help reduce the impact of air pollution from
wildfires (Davies et al., 2018, Matz et al., 2020).

Another recent study estimated the economic valuation of air pollution-
related mortality from 2018 California wildfires to be $32.2 billion for
>3500 deaths (Wang et al., 2020). As the PurpleAir sensor network
continues to grow, future studies quantifying the wildfire-associated health
and economic burdens between population groups can build upon our
current assessment of the equity implications of exposures.

4.3. Indoor/outdoor PM2.5 relationships during wildfires

The lack of information about building specifications, indoor environ-
mental conditions, and inhabitant activity, due to all data being publicly
sourced, reduces the ability to draw firm conclusion about the impact of
wildfire related PM2.5 on indoor air quality in this study. Previous studies
have documented increases in indoor PM2.5 levels correlated with time
spent indoors, which represents a portion of the data we cannot account
for in this study (Klepeis et al., 2001, Liang et al., 2021, Shrestha et al.,
2019, Luo et al., 2019). Nevertheless, this study proves the efficacy of the
PurpleAir sensors to evaluate indoor PM2.5 concentrations during wildfire
events. It provides evidence that the scientific community would benefit
from an increase in the number of indoor sensors in wildfire prone areas
to decrease the uncertainty in themeasurements of indoor PM2.5 concentra-
tions, and increase researchers' capacity to develop community-specific in-
filtration factors and draw conclusions about wildfire PM2.5 intrusions(Kelp
et al., 2022, Lu et al., 2021). It is also important to note that, due to the
lack of PurpleAir sensors in disadvantaged communities, existing analy-
ses on infiltration do not have the data needed to investigate disparities
in adaptive capacity and wildfire resilience between communities
(Davies et al., 2018). Increasing available data could help to better inform
public health officials and community leaders as to how to protect residents
from wildfires.

4.4. Implications and limitations of present study

While this study shows how the PurpleAir sensor network could con-
tribute to a better understanding of community exposure towildfire related
PM2.5, which is needed to protect the communities most at risk of bearing
the cost of wildfire emissions, there are a few limitations. The inequitable
distribution of sensors and the small number of available indoor sensors
limit the inference and generalizability of the results. Namely, the inequita-
ble distribution of sensors in our study areas (shown in Fig. 1 and Fig. S2)
results in variable confidence in our modeled air quality estimates, with
more uncertain estimates in disadvantaged communities. The correlations
of PM2.5 concentrations with variables from the CalEnviroScreen dataset
are also not precisely temporally aligned, although this issue is expected
to have only minor effects on the presented results because the percentile-
based variables represent trends. There may be issues with our modeling
technique, as wildfire emissions may violate assumptions necessary for
kriging, namely stationarity and isometry. However, we found high levels
of agreement between predicted and observed results during OOS cross
validation, suggesting that modeling was fairly robust, especially in areas
with high densities of sensors. We also found high levels of agreement
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between modeled estimates and EPA monitors. Our results do not suggest
that wildfires are the source of disparities in health or environmental qual-
ity, nor do they necessarily indicate that wildfires are the sole cause of
increased PM concentrations during the study periods. Instead, assuming
that environment and health-related variables remain fairly constant across
time, our results suggest that existing disparities could be exacerbated dur-
ingwildfire events. The underlying associations betweenwildfire emissions
and environmental health disparities warrant future study.

5. Conclusions

This study demonstrated the utility of the PurpleAir low-cost sensor
network during the California 2020 wildfire season. Even with <20 % of
sensors with usable data located in disadvantaged communities, modeled
PM2.5 concentrations successfully demonstrate census tract-level variation
throughout both study regions (Fig. 2). This study demonstrates that,
whereas most wildfires occur near more advantaged communities along
the wildland-urban interface, the impact of elevated PM2.5 levels is not
isolated to those communities. Correlations between modeled PM2.5 levels
duringwildfires and several environmental, health, and sociodemographic-
related CalEnviroScreen metrics (Fig. 3) suggest that wildfires may exacer-
bate existing health disparities and environmental justice concerns. Analy-
sis of data from indoor and outdoor PurpleAir sensors within the same
communities demonstrates that, during active wildfires, indoor concentra-
tions of PM2.5 increase concurrently with outdoor PM2.5 (Fig. 4). Analysis
shows that some I/O ratios (Fig. 5) remain consistently low, while
others increase above one during wildfires, indicating higher indoor
concentrations than outdoor. This observation demonstrates the need
for more information about indoor population behavior during wild-
fires, which can be used to establish wildfire PM2.5 infiltration rates
among various communities. Finally, this study demonstrates the need
for investment in both indoor and outdoor sensors in disadvantaged
communities, which could support future research, aid in increasing
community resiliency, and ultimately protect vulnerable populations
during wildfires (Kelp et al., 2022).
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