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A B S T R A C T   

Currently, quantifying phenology at landscape to regional scales is not feasible with field data or near-surface 
sensors. Consequently, the spatial and temporal complexity of phenology has been assessed using satellite- 
based estimates (land surface phenology, LSP). While estimates from Moderate Resolution Imaging Spectror-
adiometer (MODIS) capture intraannual patterns of phenology, they have relatively low spatial resolution. Es-
timates from sensors like Landsat capture finer spatial detail but are often limited by Landsat’s temporal 
resolution. We implemented a spatio-temporal image fusion method on the Google Earth Engine (GEE) platform 
and used the resulting dense time series of images to estimate intraannual LSP at 30-meter resolution. We utilized 
Landsat 8 surface reflectance and MODIS NBAR (Nadir BRDF-Adjusted Reflectance; MCD43A4) images from 
2016 and 2017 in the interior Pacific Northwest of the United States. Images predicted from the GEE image 
fusion algorithm were evaluated with true Landsat observations and compared with the accuracy achieved by 
executing the original ESTARFM algorithm. Excluding snow and cloud obscured observations, the algorithm 
produced approximately 215 observations per 30-meter pixel in 2017. Root mean squared prediction error 
(RMSPE) of Normalized Difference Vegetation Index (NDVI) for the GEE predicted images ranged from 0.032 to 
0.066, and the RMSPE for the original ESTARFM predicted images from the ranged from 0.027 to 0.064. Phe-
nometric estimates were evaluated with near-surface sensors (PhenoCams) in shrubland, conifer, and agricultural 
sites and field observations of phenology in grassland, open-pine, and mixed-conifer sites. Although phenometric 
estimates were dissimilar at all PhenoCam sites, the general temporal pattern of the GEE image fusion and 
PhenoCam time series was often similar. The start of season derived from the GEE image fusion time series had 
closer correspondence to the PhenoCam-derived start of season at the shrubland site (13 days) than the agri-
culture and conifer sites. The end of season was closest at one of the conifer sites and the agriculture site (22 and 
31 days, respectively). Trends of some of the field-based phenology observations aligned with phenometrics 
estimated from the image fusion time series. At the grassland and open-pine field sites, the phenometrics from 
GEE image fusion were associated with phenophase trends of dominant plant functional types. Though char-
acterizing LSP within the interior Pacific Northwest remains a challenge, this study demonstrates that image 
fusion implemented in GEE can produce a densified time series capable of capturing seasonal trends in NDVI 
related to vegetation phenology, which can be used to estimate intraannual phenometrics.   

1. Introduction 

The study of vegetation phenology provides important information 
about past, current, and potential future ecosystem states. Variation in 
the timing of phenology results from temperature, precipitation, plant 
community composition and condition, genetic traits, and soil 

characteristics (Wolkovich et al., 2014), giving it the capacity to serve as 
an indicator of climate change (Richardson et al., 2013). Phenology also 
influences many processes, including carbon flux (Forkel et al., 2016; 
Richardson et al., 2012), wildfire activity (Westerling et al., 2006), crop 
production (Anwar et al., 2015), and wildlife populations (Morellato 
et al., 2016). Moreover, certain species’ phenology can drive plant 

* Corresponding author. 
E-mail addresses: ty.nietupski@oregonstate.edu (T.C. Nietupski), rkennedy@coas.oregonstate.edu (R.E. Kennedy), temesgen.hailemariam@oregonstate.edu 

(H. Temesgen), becky.kerns@usda.gov (B.K. Kerns).  

Contents lists available at ScienceDirect 

International Journal of Applied Earth  
Observations and Geoinformation 

journal homepage: www.elsevier.com/locate/jag 

https://doi.org/10.1016/j.jag.2021.102323 
Received 15 December 2020; Received in revised form 2 March 2021; Accepted 5 March 2021   

mailto:ty.nietupski@oregonstate.edu
mailto:rkennedy@coas.oregonstate.edu
mailto:temesgen.hailemariam@oregonstate.edu
mailto:becky.kerns@usda.gov
www.sciencedirect.com/science/journal/03032434
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2021.102323
https://doi.org/10.1016/j.jag.2021.102323
https://doi.org/10.1016/j.jag.2021.102323
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2021.102323&domain=pdf
http://creativecommons.org/licenses/by/4.0/


International Journal of Applied Earth Observations and Geoinformation 99 (2021) 102323

2

community composition, with invasive species being of great concern 
(Colautti et al., 2017). However, monitoring phenology with traditional 
field-based methods is expensive and limited to small spatial extents 
(Richardson et al., 2009). 

The availability of satellite-imagery time series has allowed for 
phenological observation across previously unattainable extents, 
expanding our understanding of the relationship between phenology 
and the environment. Characterization of the temporal patterns of 
electromagnetic reflectance with satellite imagery is referred to as land 
surface phenology (LSP; de Beurs and Henebry, 2004). However, the 
spatial resolution of LSP does not always match the scale at which 
vegetation communities vary. Moreover, the phenological metrics (e.g., 
start of season) extracted by these means do not necessarily represent 
the same stages that might be recorded at a field site (e.g., leaf emer-
gence) and can be influenced by abiotic processes like snow melt and 
soil-moisture fluctuation. Consequently, LSP does not entirely fit with 
the ecological definition of phenology, which is “the study of the timing 
of recurring biological events, the causes of their timing with regard to 
biotic and abiotic forces, and the interrelation among phases of the same 
or different species” (Lieth, 1974). This inconsistency makes validation 
of LSP challenging (Nijland et al., 2016; Richardson et al., 2018). 
Quantifying LSP at more meaningful spatial and temporal scales may be 
one potential solution to some of the discrepancies between LSP esti-
mates and ground-based observations of phenology. 

A major challenge in choosing satellite data for LSP is the tradeoff 
between revisit frequency and spatial detail. Satellites like MODIS 
(Moderate Resolution Imaging Spectroradiometer), AVHRR (Advanced 
Very High Resolution Radiometer), and VIIRS (Visible Infrared Imaging 
Radiometer Suite) identify fine-grained temporal signals of plant 
development owing to their daily revisit frequency (White et al., 1997; 
Zhang et al., 2018, 2003). These revisit frequencies allow for intra-
annual estimates of phenology. However, the relatively low spatial 
resolution (e.g., 250 m – 1 km for MODIS) of these satellites results in a 
highly mixed composition of vegetation, which can reduce the utility of 
LSP estimates for studying phenomena occurring at a fine scale. This is 
particularly problematic in landscapes where resources are variably 
dispersed leading to heterogeneous vegetation patterns. 

Other satellites, like the Landsat missions, have finer spatial resolu-
tions (30-meter) but typically lack the temporal resolution to capture 
fine-scale intraannual patterns of LSP (Fisher et al., 2006; Jönsson and 
Eklundh, 2002). To address this deficiency, some have assessed long- 
term phenology estimates by aggregating multiple years of data (Mel-
aas et al., 2013), ensuring adequate observations across the growing 
season. Melaas et al. (2016) used such methods to correct the pheno-
logical estimate for individual years by adjusting the long-term mean 
curve based on individual years’ anomalies. More recently, others have 
developed methods to estimate LSP at 30-meters using Landsat and 
Sentinel-2 imagery (Bolton et al., 2020; Gao et al., 2020; Zhang et al., 
2020). Although the utilization of Landsat and Sentinel-2 shows promise 
moving forward, methods focused on leveraging older platforms enable 
the investigation of phenological changes that have occurred over the 
last 20 or more years. 

Methods that blend data from these sensors (i.e., spatio-temporal 
image fusion) have been developed to capture the complementary 
strengths of Landsat and MODIS. These algorithms leverage the tem-
poral frequency of MODIS (daily) and the spatial resolution of Landsat 
(30-meter) to predict imagery at 30-meter resolution for times when 
observations are unavailable from Landsat. There have been many new 
fusion methods developed in the last decade (see Belgiu and Stein, 
2019). One of the first methods developed for this purpose was the 
Spatio-temporal Adaptive Reflectance Fusion Model (STARFM; Gao 
et al., 2006). STARFM uses pairs of Landsat and MODIS images to pre-
dict the Landsat reflectance at a time where only MODIS is available. 
This method performs well when change in the spatial dimension is 
gradual but is less effective when change is abrupt (Emelyanova et al., 
2013; Gao et al., 2006; Hilker et al., 2009b). Other variations of spatio- 

temporal image fusion were developed to address issues with STARFM, 
including STAARCH (Spatial Temporal Adaptive Algorithm for mapping 
Reflectance Change) which improved the method for detecting distur-
bances (Hilker et al., 2009a) and ESTARFM (Enhanced STARFM; Zhu 
et al., 2010) which improved predictions in heterogenous regions 
(Emelyanova et al., 2013). 

The STARFM algorithm has been employed to estimate LSP in a 
limited number of instances (Coops et al., 2012; Gao et al., 2017; Liang 
et al., 2014; Walker et al., 2014). Walker et al. (2014) reported that the 
inclusion of STARFM-fused images helped improve LSP estimates in 
semi-arid ecosystems. Cropland LSP was also recently assessed with 
STARFM and Timesat (Jönsson and Eklundh, 2004) by Gao et al. (2017). 
They were able to extract various phenometrics (i.e., phenological 
transition dates) from the time series and evaluate these estimates with 
crop progress reports. There remains a need to execute and evaluate 
high-spatial and high-temporal LSP across expansive, heterogenous 
natural landscapes. 

While image fusion methods are promising as a means of filling in 
missing or noisy Landsat observations, these methods are computa-
tionally expensive (Gao et al., 2017; Rao et al., 2015). The development 
of cloud computing platforms like Google Earth Engine (GEE; Gorelick 
et al., 2017) may allow for the development and deployment of image 
fusion techniques, increasing their availability and reducing the onsite 
processing infrastructure and processing time. One such method was 
recently developed and tested using GEE (Moreno-Martínez et al., 
2020), demonstrating the potential for this type of application of the 
GEE platform. 

In this study, we developed and evaluated methods for estimating 
LSP in a heterogenous region of the interior Pacific Northwest of the 
United States. This research had three primary objectives: 1) develop an 
ESTARFM-like approach to spatio-temporal image fusion that is capable 
of running on a cloud-computing platform (GEE); 2) process and 
assemble a time series of daily 30-meter imagery and evaluate the 
quality of fused images across the growing season; and 3) estimate LSP 
and assess the similarity of LSP estimates to estimates from near-surface 
cameras (PhenoCams) and ground-based observations from field data. 
Phenometrics were evaluated at varying spatial scales and with multiple 
datasets to account for potential discrepancies in scale and in the 
method of phenological observation. 

2. Methods 

The estimation of LSP with high-spatial and high-temporal resolution 
was accomplished with a two-phase process. First, a high-resolution 
time series was assembled from Landsat observations and MODIS- 
derived predictions with an ESTARFM-like algorithm implemented on 
GEE (hereafter, GEE image fusion). The time series created with the GEE 
image fusion was then used to estimate phenometrics with a double- 
logistic smoothing method where transition dates were extracted 
based on rates of change and curve inflection points. 

2.1. Study area 

The interior Pacific Northwest region is composed of a variety of 
natural and human-derived land cover types that are well suited to 
testing the methods of this research (Fig. 1). The region includes parts of 
the Columbia Plateau, Blue Mountains, and Northern Basin and Range 
Ecoregions, including the eastern edge of the Eastern Cascades Slopes 
and Foothills (Omernik, 1987). The region has an arid to semi-arid 
climate resulting from the Cascade Range’s rain-shadow, which in-
teracts with numerous mountain ranges, canyons, and valleys to pro-
duce a mosaic of forest, grassland, and shrubland plant communities. 
The marine-influenced continental climate is characterized by warm, 
dry summers and cold winters, during which most of the annual pre-
cipitation occurs. On average, total annual precipitation for this region 
ranged from 16 to 277 cm (mean of 43 cm) and mean annual 
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temperature ranged from − 1 to 13 ◦C (mean of 8 ◦C) between 1981 and 
2010 (PRISM Climate Group, 2012). 

2.2. Spatio-temporal image fusion 

2.2.1. Satellite data and image pre-processing 
The satellite data used in this study are Landsat 8 OLI (Operational 

Fig. 1. The study area including one of the Landsat scenes (Figs. 5 and 6) used to evaluate image fusion. Land cover types within the region vary at fine spatial scales, 
as shown by the National Land Cover Database (NLCD) 2016 land cover classes (Yang et al., 2018). The PhenoCam sites (purple) and the Starkey Experimental Forest 
and Range site (blue) used to evaluate LSP estimates are also indicated. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 2. The dates of all Landsat images used in the GEE image fusion and LSP estimation for each WRS-2 scene. For LSP estimation, images occurring in January and 
February 2017 were dropped due to persistent cloud and snow cover during this period. An orange point indicates that the Landsat image was paired with a MODIS 
image for GEE image fusion. A black point indicates that the image was not used in the GEE image fusion because it had greater than 5-percent cloud cover, but valid 
pixels from the image were retained in the final time series. Percent cloud cover is indicated by the transparency of each point where high transparency correspond 
with high cloud cover. Specific images used to evaluate the accuracy of image-fusion predictions are denoted with an “X” mark. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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Land Imager) Surface Reflectance and MODIS NBAR (Nadir BRDF- 
Adjusted Reflectance) imagery provided to GEE by the United States 
Geological Survey. Landsat data were corrected to surface reflectance 
with the LaSRC method (Landsat Surface Reflectance Code; Vermote 
et al., 2016) and included a cloud mask calculated with the CFMask 
method (C code based on the Function of Mask; Foga et al., 2017). 
MODIS NBAR data (i.e., MCD43A4) are generated using both Terra and 
Aqua satellites to correct MOD09 surface reflectance to a nadir viewing 
angle using the bidirectional reflectance distribution function generated 
from images in a 16-day moving window (Schaaf et al., 2002; Vermote 
et al., 1997). These data were found to yield the best results in spatio- 
temporal image fusion based on comparisons among MOD09GA, 
MCD43A4, and MOD09A1 (Walker et al., 2012). 

In preparation of the image-fusion process, additional filtering and 
preprocessing methods were applied to the Landsat and MODIS data. 
First, Landsat and MODIS images were acquired for dates between July 
29th, 2016 and June 1st, 2018. Landsat images used in the image fusion 
were restricted to those with less than 5-percent cloud cover to ensure 
that fused images were as close to cloud-free as possible. Landsat images 
with greater than 50-percent snow-flagged pixels were also excluded 
from use in the image-fusion process. All Landsat pixels flagged as cloud, 
cloud shadow, or snow in the quality band of each image were masked. 
The MCD43A4 product does not include a mask for snow, so the Snow 
Water Index (Dixit et al., 2019) was used to identify and mask all snow- 
covered pixels from the MODIS imagery. For each image, the NDVI 
(Normalized Difference Vegetation Index; Rouse et al., 1973) was 
calculated from red and near-infrared bands. The filtered and masked 
Landsat images were then paired with masked MODIS images from the 
corresponding date. For each scene, this resulted in between 6 and 11 
pairs of Landsat and MODIS images. The earliest Landsat image from 
2016 was the first image paired with a MODIS image prior to September 
(further details provided in Section 2.3.2). All MODIS images from dates 
between the first and last pairs were used for prediction. The geolocation 
accuracy of MODIS and Landsat differ, partially as a result of pixel 
resolution, and it has been reported that an additional pre-fusion step of 
co-registration can improve image-fusion results (Gao et al., 2015). 
Therefore, MODIS images used in the GEE image fusion were registered 
to the earliest Landsat image of each set of pairs. The co-registration of 
MODIS images to Landsat images was performed using a rubber-sheet 
technique based on image correlation (Wang et al., 2014). 

2.2.2. Image fusion algorithm and theory 
Preprocessed Landsat and MODIS imagery were used to perform an 

image fusion-process similar to the methods developed by Gao et al. 
(2006) and Zhu et al. (2010). Although systematic differences exist be-
tween these two sensors for the same location and date, Landsat OLI and 
MODIS surface reflectance products were recently determined to be 
highly comparable (Vermote et al., 2016). The implementation of image 
fusion in GEE was guided by the following theory and assumptions. 

For a MODIS pixel with homogenous land cover (i.e., a homogenous 
MODIS pixel), the relationship with Landsat surface reflectance can be 
represented as 

Lsij ,tk ,b = Msi ,tk ,b + εtk (1)  

where L and M represent Landsat and MODIS images, respectively; si is 
the location of a MODIS pixel; sij is the location of a Landsat pixel within 
the MODIS pixel at si; tk is the date; b is the band; and εtk is the reflec-
tance difference at date tk. Reflectance difference can be induced by 
various factors including geolocation error and solar geometry at the 
time of acquisition. Assuming that the error is the same between time 
periods (i.e., εt0 = εt1 ; Gao et al., 2006), Eq. (1) can be rewritten to 
approximate the Landsat reflectance at a time where only MODIS 
reflectance is available as 

Lsij ,t1 ,b = Lsij ,t0 ,b +
(
Msi ,t1 ,b − Msi ,t0 ,b

)
(2)  

where time-1 (t1) represents a date without a true Landsat observation 
and time-0 (t0) is a date with both Landsat and MODIS observations. 

Land cover is often heterogenous at the scale of a MODIS pixel. The 
reflectance of a MODIS pixel (Msi ,tk ,b) can be represented as a mixture of 
the reflectance of each cover class within that pixel. In this context, the 
reflectance of a MODIS pixel could be thought of as the area weighted 
average reflectance of each land-cover class at the Landsat scale, 

Msi ,tk ,b =
∑C

c=1

(
nc

N
×

∑nc
j=1Lsij ,tk ,b,c

nc

)

+ εtk (3)  

where C is the total number of land cover classes; N is the total number 
of sij Landsat-resolution pixels within a MODIS pixel at si; nc is the 
number of Landsat pixels in a land-cover class; and here Lsij ,tk ,b,c notates 
the Lsij ,tk ,b (Landsat pixel reflectance) in the cth land-cover class. 

In practice, a pixel’s surface reflectance can be better estimated by 
considering a moving window that includes multiple MODIS pixels at 
times when Landsat observations are not available. Within this window, 
‘similar’ pixels (i.e., pixels assumed to be the same land-cover class) are 
used to estimate the central pixel’s value. For this study, similar pixels 
were selected based on the following criteria defined by Gao et al. 
(2006) 

⃒
⃒Lsij ,tk ,b − Lsi ,tk ,b

⃒
⃒ ≤ σtk ,b ×

2
CL

(4) 

For simplicity, Lsi ,tk ,b is hereafter redefined to represent the central 
pixel in the moving window and Lsij ,tk ,b to represent any other pixel 
within the moving window; σtk ,b is the standard deviation of a band (b) of 
the Landsat image (L) at time tk; and CL is the number of land-cover 
classes in image L. Similar pixels were constrained to those that were 
similar in the image pairs immediately before and after the prediction 
date. Note that M has been resampled to the same resolution as L (i.e., 
30-meter). At this resolution for M, Msij ,tk ,b refers to a pixel within the 
moving window, as defined above. 

To improve the prediction accuracy, similar pixels within a land- 
cover type were weighted based on spatial and spectral proximity 
(Zhu et al., 2010). It is assumed that similar pixels within a land-cover 
type are more likely to change similarly to the central pixel. There-
fore, this weighting step ensures that pixels of the same land-cover class 
within close proximity are given greater weight. Different cover classes 
may not change at the same rate over time, so linear regression can be 
used to approximate a scaling coefficient (i.e., β in Eq. (5)) for the rate of 
change of an individual cover class within the window. 

After adding the moving window and scaling coefficient, Eq. (2) 
becomes 

Lsi ,t1 ,b = Lsi ,t0 ,b +
∑P

p∈j
wp × β ×

(
Msijp ,t1 ,b − Msijp ,t0 ,b

)
(5)  

where P is the number of similar pixels within the window; wp is the 
weight of the pth similar pixel in the window; β is a scaling coefficient for 
the MODIS pixel difference, which is based on the rate of change be-
tween image dates for all similar pixels in the window; and sijp notates 
the pth similar pixel, which is located at sij. The final refinement to the 
prediction is achieved by averaging predictions obtained from Landsat 
and MODIS image pairs before and after the prediction date. 

The approach outlined here follows much of the same theory and 
assumptions as image fusion with the ESTARFM algorithm, however, 
some details differ. The design of GEE prevents the direct iteration over 
pixels performed in the original STARFM and ESTARFM algorithms. 
However, similar approaches can be applied in GEE where the neigh-
borhood around each pixel is used. As mentioned above, the calculation 
for the scaling coefficient (β) in the GEE image fusion approach is based 
on all similar pixels within a window. In contrast, the calculation in 
ESTARFM solely uses values within an individual MODIS pixel. As 
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opposed to having a scaling coefficient applied to a broad region (e.g., 
an entire image), calculating the scaling coefficient in the whole window 
keeps this calculation local to the window but still increases the region 
over which the scaling coefficient is applied in comparison to the 
calculation implemented in ESTARFM. Producing a dense time series of 
a vegetation index can be performed with “blend-then-index” or “index- 
then-blend” approaches, but it was found that the latter method pro-
duces higher accuracy results because there is less error propagation in 
the process (Jarihani et al., 2014). Although the algorithm used in the 
GEE image fusion is flexible in terms of its application to an index or 
reflectance, an “index-then-blend” approach was used. This raises an 
issue for calculating spectral similarity using the ESTARFM methodol-
ogy. In assigning the weight to similar pixels Zhu et al. (2010) deter-
mined spectral similarity based on the correlation between Landsat and 
MODIS spectral vectors. However, spectral similarity calculated from 
the correlation of a single band could only take the value of − 1 or 1. 
Therefore, spectral similarity in the GEE image fusion was calculated as 
the absolute difference between Landsat and MODIS pixels allowing for 
any number of bands to be used in the fusion process. 

2.2.3. Evaluation 
Landsat 8 images with low amounts of cloud cover that were not used 

in the GEE image fusion process (i.e., cloud cover between 5 and 25%) 
were used to evaluate the quality of the images produced through the 
image fusion. These images were not suited for use in the image fusion, 
as the amount of cloud cover was too high, but contained cloud and 
snow free observations that could be compared with the image fusion 
predictions. Clouds, cloud shadows, and snow were masked from these 
images. 

Two Landsat WRS-2 scenes were used for evaluation (path 43/ row 
29 and path 43/ row 30). These scenes contained all land-cover types 
present within the broader study area and areas of high spatial hetero-
geneity. All six images meeting cloud cover requirements were used to 
evaluate the image fusion predictions (Fig. 1, Appendix 1). The six 
evaluation images were captured during April, June, July, August, and 
September, allowing performance to be quantified across the growing 
season. 

The overall quality of the prediction was evaluated using root mean 
squared prediction error (RMSPE), bias, signed relative bias (SRB), and 
Pearson’s correlation (r), calculated as: 

RMSPE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
NDVIi − ̂NDVIi

)2
√

(6)  

bias =
1
n

∑n

i=1

(
NDVIi − ̂NDVIi

)
(7)  

SRB = sign(bias)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

bias2

RMSPE2 − bias2

√

(8)  

r =

∑n
i=1

(
NDVIi − NDVI

)(
̂NDVIi − N̂DVI

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
NDVIi − NDVI

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1

(
̂NDVIi − N̂DVI

)2
√ (9)  

where n is the number of sampled pixels, NDVIi is the NDVI value for the 
ith pixel from the true Landsat image, N̂DVIi is the NDVI value for the ith 

pixel from the predicted image, NDVI is the mean NDVI of the true 

image, N̂DVI is the mean NDVI of the predicted image, and sign(bias) is 
the sign associated with the value of bias. 

These measures were calculated from a random sample of 5,000 
pixels across each image to get an overall measure of accuracy at an 
image level. Accuracy was also evaluated by land-cover class in each 
image by sampling 5,000 pixels within forest, shrub, grassland, and 
agriculture land-cover types. The NLCD 2016 land-cover map (Yang 
et al., 2018) was utilized to determine the location of each of these land- 

cover types. In addition to evaluating prediction metrics, the NDVI from 
both true Landsat and predicted images was visually inspected to 
identify unusual patterns in the images. 

To determine cloud-computing improvements to computation time 
and confirm that predictive performance of the GEE implementation of 
image fusion was comparable to the original ESTARFM algorithm, a 
Python version of ESTARFM (https://xiaolinzhu.weebly.com/open-so 
urce-code.html) was also executed and evaluated using the same pre- 
processed image pairs, including the same sampling process for evalu-
ation metrics at the scene level and within each of the land-cover classes. 
The ESTARFM algorithm was run on a 16-core processor (AMD Ryzen 9 
3950x) at an average clock rate of 4.2 GHz. 

2.3. Land surface phenology 

2.3.1. Image post-processing 
As a post-processing step for estimating LSP, predictions of Landsat- 

resolution images produced using the GEE image fusion were combined 
with all true Landsat observations from late 2016 through the end of 
2017. Landsat images that contained cloud- and snow-free observations 
not used in the GEE image fusion were combined with the time series of 
fused images. True Landsat observations were retained at times when 
there were both true pixels and predicted pixels. The final time series 
contained a near-daily record over late 2016 through the end of 2017. 
Detailed information about the Landsat and MODIS images used in the 
GEE image fusion can be found in Appendix 1. All image processing, 
from pre-processing through post-processing, was completed using the 
Python and JavaScript API’s for GEE. 

2.3.2. Time series smoothing and phenometric extraction 
Periods of cloud and snow cover are common in the interior Pacific 

Northwest, resulting in missing data in the early season (Appendix 1). To 
approximate the NDVI at these times, the median NDVI value from 
September 2016 was imputed to the months of January and February of 
2017 as this time of year represents the NDVI expected for dormant 
vegetation in the region. This method of determining the ‘winter’ NDVI 
is similar to methods that have been employed to estimate long-term 
phenological cycles in northern latitudes, which typically do not have 
many snow- or cloud-free early- or late-season observations (Beck et al., 
2006). Later in the growth cycle, other occasional missing values were 
linearly interpolated from values occurring before and after the missing 
observation. 

Moving from a time series of observations to an estimate of pheno-
metrics can be accomplished through several approaches (Cai et al., 
2017; Zeng et al., 2020; Zhou et al., 2016). Some methods only provide 
an estimate of the start of season (SOS) while others offer a suite of 
phenology characteristics. A recent comparison of methods found that 
using double-logistic functions produced predictions that showed 
coherent spatial patterns, corresponded well with gross primary pro-
ductivity, and agreed with the expected effects of elevation on pheno-
metrics (Cai et al., 2017). Furthermore, double-logistic smoothing can 
capture asymmetrical annual patterns and is more robust to the effects of 
noise than local smoothing methods like Savitsky-Golay filtering and 
LOESS smoothing (Cai et al., 2017). Double-logistic smoothing also al-
lows for the extraction of several phenometrics automatically and 
robustly across an image. 

Double-logistic smoothing and automated phenometric-extraction 
techniques were applied to calculate phenometrics. The following 
double-logistic function was used to model the annual growth pattern: 

vt = m1 +(m2 − m1) ×

(
1

1 + e(− m3×(t− m4) )
+

1
1 + e(m5×(t− m6) )

− 1
)

(10)  

where vt is the vegetation index at time t; m1 is the minimum index value 
or the ‘winter’ NDVI; m2 is the maximum index value; m3 and m5 are the 
rate of change associated with the SOS and end of season (EOS), 
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respectively; and m4 and m6 are the day of year (DOY) associated with 
the SOS and EOS, respectively. 

This double logistic model (Eq. (10)) also allows for the automated 
extraction of phenometrics that characterize six seasonal transition 
dates: start of green-up, SOS, maturity, EOS, dormancy, and length of 
season (Fig. 3). The SOS and EOS are represented by m4 and m6, 
respectively, and are found at the point along the spring growth and fall 
senescence trajectory where the model’s slope is steepest (i.e., maximum 
(SOS) and minimum (EOS) of the first derivative of Eq. (10)). Start of 
green-up, maturity, and dormancy correspond to the model’s inflection 
points (i.e., local maxima of the second derivative of Eq. (10)). Length of 
season is the number of days between SOS and EOS. Other character-
istics that could be used to describe the phenology for an individual time 
series include the seasonal amplitude (i.e., m2 − m1) and the slope at the 
SOS and EOS (m3 and m5, respectively). 

Eq. (10) was solved using the Levenberg-Marquardt least-squares 
algorithm (Levenberg, 1944). Non-linear least-squares optimization and 
phenometric extraction were performed with Python 3 using the LMFIT 
and SciPy packages (Newville et al., 2014; Virtanen et al., 2020). 

2.3.3. Evaluation 
Fusion-derived LSP and phenometrics were compared with estimates 

from near-surface cameras and ground-based observations. Near-surface 
estimates came from the PhenoCam Dataset v2.0 (Seyednasrollah et al., 
2019) and ground-based observations came from field data provided by 
the Oregon Department of Fish and Wildlife (ODFW; ODFW, unpub-
lished data). To compare the fusion-derived estimates with PhenoCam 
and ODFW data, the pixel nearest the location of each PhenoCam or 
ODFW site were extracted. Scenes overlapping PhenoCam and ODFW 
sites include Landsat WRS-2 path 45/ row 29, path 44/ row 30, path 43/ 
row 30, path 43/ row 28, and path 42/ row 28. 

The PhenoCam project is a network of digital cameras that observe 
near-surface conditions across North America (http://phenocam.unh. 
edu). While several PhenoCams are located within the region, only 
four cameras had an adequate number of observations for 2017. The 
four cameras are burnssagebrush, oregonMP, oregonYP, and cafcoo-
keastltar01, referred to hereafter as PhenoCam-1 through 4, respectively 
(Fig. 4). The four cameras are located within land-cover types including 
sagebrush steppe (PhenoCam-1), ponderosa pine forest (PhenoCam-2, 
PhenoCam-3), and agriculture (PhenoCam-4). The camera located at the 
agriculture site did not have observations recorded before the time when 

the crop was planted in 2017, so values from the dormant period after 
the harvest were used to estimate conditions in early 2017. 

Several preprocessing procedures were performed for the PhenoCam 
data (downloaded from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_i 
d=1674) before their utilization in this analysis; further details can be 
found in Seyednasrollah et al. (2019). Green Chromatic Coordinate 
(Gcc), a canopy greenness metric, is the most similar metric to NDVI 
produced with the PhenoCam data and has been frequently used to 
compare LSP from satellites and PhenoCams (Gao et al., 2020; 
Richardson et al., 2018). Green Chromatic Coordinate is defined as 

Gcc =
GDN

RDN + GDN + BDN
(11)  

where the subscript DN indicates the digital number and RDN, GDN, and 
BDN are the red, green, and blue bands, respectively. The double-logistic 
smoothing and phenometric extraction techniques were applied to the 
prepared Gcc time series with the method described in Section 2.3.2. 

Field phenology data contributed by ODFW were collected at the 
Starkey Experimental Forest and Range (SEFR), located in the area 
overlapping Landsat WRS-2 scenes at path 44/ row 29 and path 43/ row 
29 (Fig. 1). A total of 11 sites in three plant-community types were 
monitored at two-week intervals starting April 6th, 2017 and continuing 
through November 11th, 2017. The plant-community types included 
grassland, open pine, and mixed conifer (4, 4, and 3 sites, respectively). 
At each site, a 25-meter transect was established containing four one- 
meter square subplots. Within each subplot, the understory aerial 
cover was recorded in 20-percent intervals for four plant functional 
groups (forbs, grasses, deciduous woody, and evergreen woody). Addi-
tionally, the percent of plants in each of three phenophase categories 
(green-up, vegetative, and cured) was recorded in 20-percent intervals 
for each functional group. Therefore, the proportion of a given func-
tional group in each phenophase is weighted by that functional group’s 
total aerial cover at that time. The green-up phase included plants with 
any new growth (e.g., the onset of leaf greening, young leaves, 
increasing leaf size); the cured phase included plants with senescent 
leaves or other vegetative parts (e.g., loss of pigment, leaf drop, cured 
plant parts); and the vegetative phase included plants that fell between 
green-up and cured (e.g., fully green leaves, elongated stems, no longer 
putting on new growth). 

The ODFW data of aerial cover and phenophase were summarized at 

Fig. 3. Example of the fitted double-logistic model 
(black line) for a single pixel’s time series after post- 
processing (orange points). Blue dotted lines show 
the start of green-up (1), maturity (3), and dormancy 
(5). Blue dashed lines show the start of season (2) 
and end of season (4). Black arrows show the length 
of season (6), seasonal amplitude (7), and ‘winter’ 
NDVI (8). The bottom two panels show the first and 
second derivative of the fitted double-logistic model 
and the local maxima and minima corresponding to 
the various phenometrics. (For interpretation of the 
references to colour in this figure legend, the reader 
is referred to the web version of this article.)   
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Fig. 4. The image taken at approximately noon on July 5th, 2017 for each of the four PhenoCams. Each image recorded by the PhenoCams was masked using the 
shaded polygons (region of interest). The masked images were then used to calculate the mean digital number for each band. 

Fig. 5. Three panels showing the 2016 NCLD land-cover classes, NDVI from the true Landsat image, and NDVI from the GEE image fusion prediction. This example is 
from path 43/ row 29 on June 7th, 2017. Image pairs used for this prediction occurred on May 22nd, 2017 and June 23rd, 2017. The location of this scene is shown in 
the context of the study region in Fig. 1. NDVI values below 0 shown in blue to help focus on the variation in the 0 to 1 range. Masked pixels are shown in white. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the transect level to represent a scale closer to a Landsat pixel. To 
accomplish this for a given functional group and phenophase (e.g., forb 
in green-up), the subplot-level values for aerial cover class and pheno-
phase class were first converted to the midpoint of their respective 
ranges (i.e., 10% represents the 0–20% class). Next, midpoint values for 
aerial cover and phenophase were multiplied together at the subplot 
level. Finally, these values were averaged across the 4 subplots within a 
transect. The resulting values represent a summary of the proportion of 
each functional group in each phenophase relative to the cover of the 
functional group. 

3. Results 

3.1. Spatio-temporal image fusion 

Combining all available cloud- and snow-free Landsat images with 
the GEE image fusion predictions resulted in a substantial increase in the 
number of 30-meter observations. Within the two scenes for which GEE 
image fusion was evaluated, the final time series had a median of 215 
observations in each pixel between DOY 1 and 300, with the middle 90% 
of pixels containing between 53 (5th quantile) and 248 observations 
(95th quantile) for this period. This temporal range (i.e., DOY 1 – 300) 
captures the region’s growing season, with a buffer on either side. Pixels 
associated with the lower range of these values corresponded to high 
elevation areas with persistent snow and cloud cover. 

Visual comparison of the GEE image fusion predictions with true 
Landsat images from the same date showed relatively strong corre-
spondence (Fig. 5). Areas where differences were most apparent corre-
sponded to conditions of especially high-spatial or high-temporal 
variability, such as areas with forest and grassland in close-proximity 
and areas where surface water was ephemerally present. This was not 
unexpected as an accurate prediction of abrupt or rapid changes is a 
known challenge for image fusion techniques (Gao et al., 2006; Zhu 
et al., 2010). 

Overall, the images predicted with the GEE image fusion strongly 
corresponded with the true Landsat observations from the same date 
(Table 1, Fig. 6, Appendix 2). Predicted images had the lowest correla-
tion to true Landsat images in the early growing season (e.g., the image 
from DOY 94 at path 43/ row 30). The evaluation metrics calculated on 
a scene-wide basis also showed that the GEE image fusion performed 
better during peak growing season than during earlier or later periods of 
the year. The predictions had negative bias and SRB, overpredicting 
NDVI in five out of the six images. Overall, SRB ranged from 0.07 to 
− 0.54 and was best during the peak of the season. As expected, vari-
ability in the predictions was similar but slightly lower than variability 
in the true Landsat images (an artifact of downscaling course-resolution 
data). Differences in variability in the evaluation images follows sea-
sonal trends also present in RMSPE, bias, and SRB. 

When compared to the locally run ESTARFM algorithm, total pro-
cessing time between the two methods differed substantially. On 
average, the GEE fusion completed in 105.83 min and the ESTARFM 
processing completed in 298.41 min. Evaluation metrics demonstrated 
similar performance between the GEE fusion and locally run ESTARFM 
methods (Table 1). 

When predicted images were evaluated by the four land-cover clas-
ses, a seasonal trend was also present in the RMSPE, bias, and SRB 
(Fig. 7). Predictive accuracy varied by land-cover type, with shrubland 
and grassland generally performing better across the year in terms of 
RMSPE and bias. However, when the class variability is considered (i.e., 
SRB), difference in performance between land cover classes was less 
noticeable. While forest and agriculture classes tended to have higher 
variation in bias across the year, the SRB is more similar across classes 
because variability of NDVI is lower in grassland and shrubland. This is 
not unexpected as forest and agricultural areas are more spatially 
heterogenous than grassland and shrubland areas in this region. GEE 
fused images tended to overpredict rather than underpredict, regardless 
of the cover type. As found in the scene wide evaluation, ESTARFM 
produced similar results across the four different land-cover types 
(Fig. 7). 

3.2. Land surface phenology 

3.2.1. PhenoCam 
General temporal trends in the double-logistic curve fit were 

consistent between the GEE image fusion and PhenoCam datasets (e.g., 
Fig. 8). However, not all NDVI-derived phenometrics estimated from the 
GEE image fusion dataset reliably aligned with the Gcc-derived pheno-
metrics estimated from the PhenoCam datasets. Both datasets resulted in 
similar SOS but different EOS for the PhenoCam located in sagebrush 
steppe near Burns, Oregon (PhenoCam-1; Fig. 8). 

Table 1 
Image evaluation results for each DOY and scene combination. A total of 5000 pixels were sampled from each image to calculate bias, correlation, RMSPE, and SRB. All 
pixels were used to calculate the variance of each image. Italicized values inside parentheses correspond to the ESTARFM results while the GEE image fusion results are 
in a regular typeface.  

Scene DOY Landsat σ2 Image Fusion σ2 Bias Pearson’s r RMSPE SRB 

path 43/ row 29 158 0.033 0.028 (0.032) − 0.026 (− 0.027) 0.955 (0.955) 0.060 (0.060) − 0.483 (− 0.51)  
206 0.040 0.042 (0.042) − 0.002 (− 0.002) 0.980 (0.978) 0.041 (0.043) − 0.059 (− 0.042)  
252 0.047 0.040 (0.049) − 0.016 (− 0.015) 0.971 (0.972) 0.054 (0.053) − 0.318 (− 0.291) 

path 43/ row 30 94 0.011 0.008 (0.012) − 0.032 (− 0.031) 0.847 (0.870) 0.066 (0.064) − 0.546 (− 0.562)  
206 0.022 0.022 (0.019) 0.002 (0.002) 0.977 (0.981) 0.032 (0.030) 0.070 (0.063)  
222 0.018 0.017 (0.018) − 0.002 (− 0.001) 0.971 (0.98) 0.033 (0.027) − 0.049 (− 0.039)  

Fig. 6. Hex grid of the NDVI derived from true Landsat vs. the GEE image 
fusion for path 43/ row 29 on June 7th, 2017 (DOY 158, Fig. 5). The value at 
each hex position is the log of the number of observations (approximately 30 
million observations total). Histograms show the distribution of observed 
values for the respective axis. 
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The PhenoCam in agricultural lands near Moscow, Idaho (Pheno-
Cam-4) showed little similarity in the predicted SOS and EOS metrics 
(Table 2, Appendix 3). However, the image fusion dataset did show a 
similar trend in declining NDVI at the EOS. Some of the differences in 
predicted metrics at this site are likely attributable to greening in the 
early season not recorded by this PhenoCam (this site had early season 
values imputed). As other authors have noted, conifer forests typically 
do not have distinct transitions between the dormant and active states. 
The double-logistic model is not suited to reliably capture such seasonal 
trends (Nijland et al., 2016). Accordingly, the phenometrics from the 
two PhenoCam sites located in conifer forest near Bend, Oregon (Phe-
noCam-2, PhenoCam-3) did not align well with the NDVI-derived phe-
nometrics (Table 2, Appendix 3). 

3.2.2. Starkey experimental forest and range 
The fusion-derived SOS corresponded with SEFR understory obser-

vations at a few of the open pine sites (Fig. 9, transects 4, 6, and 9), for 
which the estimated SOS occurred when the dominant functional groups 
(grass, forb) were primarily in the green-up phenophase. Because 
phenology monitoring at SEFR did not start until April 6th, 2017, the 
true beginning of the season and growth initiation was not captured for 
the SEFR grassland sites (Fig. 10). The fusion-derived EOS and 
dormancy closely aligned with field-observed patterns of senescence and 
temporal trends in dominant functional groups. EOS most frequently 
occurred when the proportion of plants putting on new growth rapidly 
decreased and right before or during the time when the proportion of 
cured plants increased. Dormancy coincided with the time of year when 

Fig. 7. Performance of the GEE image fusion and locally run ESTARFM within the four NLCD land-cover types and within the scenes located at A) path 43/ row 29, 
and B) path 43/ row 30. The x-axis shows the DOY in which the model performance was evaluated for each scene (3 DOY’s/scene). Performance metrics evaluated for 
each scene-date combination include RMSPE, bias, and SRB. 
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the proportion of cured plants was at or near its maximum. As expected, 
correspondence between the fusion-derived phenometrics and the SEFR 
understory field observations was lowest for the SEFR mixed-conifer 
sites (Appendix 4). Correspondence is expected to decrease with 
increased mature conifer canopy cover as conifer dominance will 
obscure the signal exhibited by understory plants. 

4. Discussion 

This study explored the utility of GEE in implementing an ESTARFM- 
like image fusion technique that was applied to estimate LSP at a 30- 

meter resolution. When estimates of LSP are derived exclusively from 
MODIS or Landsat, they are limited by the spatial or temporal charac-
teristics of these data. As a result, intraannual LSP from MODIS is limited 
to 250 to 500-meter resolutions (Zhang et al., 2018, 2003), while higher 
spatial-resolution estimates from Landsat are often limited to multiyear 
averages (Melaas et al., 2016, 2013). Both approaches serve to charac-
terize different aspects of phenology but may be constrained in their 
application to processes that fit within their respective spatial or tem-
poral domains. Recently launched satellites like Sentinel-2 and the 
creation of the Harmonized Landsat Sentinel dataset (Claverie et al., 
2018) have created new opportunities for estimating LSP with 
high-spatial and high-temporal resolution (Bolton et al., 2020; Gao 
et al., 2020; Zhang et al., 2020). However, these data lack the long 
archive available with sensors like Landsat or MODIS, which allow for 
LSP estimates from the past two decades or more. 

4.1. Spatio-temporal image fusion 

This study demonstrated that spatio-temporal image fusion imple-
mented on a cloud-computing platform can produce accurate image 
predictions throughout the growing season. Implementing image fusion 
in cloud-computing environments can increase the accessibility of image 
fusion datasets for enhanced prediction of intraannual phenology. The 

Fig. 8. Comparison of the time series and model fit for the sagebrush PhenoCam site near Burns, Oregon (PhenoCam-1). The top panel (a) shows the GEE image 
fusion’s NDVI-derived time series, model, and phenometrics. The bottom panel (b) shows the PhenoCam’s Gcc-derived time series, model, and phenometrics. For each 
main panel (i.e., a and b), the three subpanels follow the labeling and symbology conventions of Fig. 3. 

Table 2 
Phenometrics (DOY) estimated at each of the PhenoCam sites.  

Dataset Site SOG SOS Mat EOS Dorm 

NDVI- image fusion PhenoCam-1 63 71 110 172 194  
PhenoCam-2 – 62 – 142 –  
PhenoCam-3 – − 823 – 292 –  
PhenoCam-4 56 74 92 223 279 

GCC- PhenoCam PhenoCam-1 50 84 117 252 331  
PhenoCam-2 50 104 165 306 362  
PhenoCam-3 28 91 190 314 362  
PhenoCam-4 138 149 169 193 201  
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evaluation showed that our implementation of image fusion on GEE had 
similar accuracy to ESTARFM for a heterogenous landscape, both when 
considered as a whole and within particular vegetation classes. The 
accuracy reported in this study was also within the range of accuracy 
reported by other studies evaluating image-fusion algorithms (Chen 
et al., 2015; Liao et al., 2016). Early season predictions from GEE image 
fusion were the least correlated with true Landsat images, which is likely 
attributed to the rate of vegetation change in early season or the length 
of time between image pairs and predicted images (Fig. 2, Appendix 1). 
The linear-change assumption of the model is less reliable when time 
between predictions is greater. Implementation on GEE also substan-
tially decreases the processing time required for large-scale image- 
fusion tasks, processing evaluation images 2.8 times faster than the 
locally run ESTARFM algorithm. In testing the GEE image fusion algo-
rithm, a year and a half of image predictions completed in approxi-
mately the same time as reported for a year of image predictions 
produced with the STARFM algorithm (Gao et al., 2017); this is a 

significant reduction, considering that other comparisons show that 
ESTARFM processing takes longer than STARFM (Rao et al., 2015). 

Unlike the ESTARFM algorithm, the GEE image fusion method uses 
all MODIS pixels with the moving window to determine the conversion 
coefficient. Predictive performance in heterogenous landscapes for 
ESTARFM draws from this conversion coefficient and its relation to 
principles of spectral unmixing (Zhu et al., 2010). Specifically, the 
conversion coefficient accounts for the land-cover rate of change by 
estimating change within a land-cover class relative to the change in an 
individual MODIS pixel. Instead of considering change relative to an 
individual MODIS pixel, our implementation determines this coefficient 
for the entire window. This allows the relative rate of change to remain 
local to the window while providing a more generalized approximation 
based on the relationship between all MODIS and Landsat pixels in a 
cover class. 

Fig. 9. The SEFR transects sampled in open-pine sites for the 2017 growing season. The top panel shows percent cover by functional group at the four sites 
(transects). The bottom panel shows the proportion of vegetation in each phase by functional group. In both panels, vertical lines show the phenometrics estimated 
from the GEE image fusion’s NDVI time-series, including start of green-up (SOG), start of season (SOS), end of season (EOS), and dormancy (Dorm). In both panels, 
lines may overlap for functional groups with little aerial cover (i.e., those with cover recorded in the 0–10% class or low proportion in a given phase; e.g., shrub in 
transect 5 or, at day of year 100 in transect 5, grass in the cured phase). 
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4.2. Land surface phenology 

The comparison between image-fusion and PhenoCam phenometrics 
showed mixed results. While general trends in phenology held for 
shrublands, phenometrics such as SOS and EOS were not similar be-
tween the datasets. In a worldwide study, Richardson et al. (2018) found 
that NDVI-derived estimates of the SOS from MODIS in agriculture and 
grassland differed by 25 and 11 days with standard deviations of 27 and 
15 days, respectively. Differences in the spectra used for NDVI (image 
fusion) and GCC (PhenoCam), sun-sensor angles, cloud- or snow-cover 
effects, and field-of-view could all contribute to phenometric differ-
ences between the datasets. 

This study’s use of the MCD43A4 product could have also impacted 
the similarity of image-fusion-derived phenometrics and PhenoCam 
phenometrics or field data. MODIS NBAR data are corrected to account 
for the pixel level anisotropy using a BRDF model calculated from a 16- 
day window (Schaaf et al., 2002). Accordingly, any surface changes (e. 

g., vegetation growth/senescence, disturbance) that may have occurred 
over this time frame could impact the BRDF model and the adjusted 
reflectance. Depending on the surface conditions over the 16-day win-
dow, the BRDF adjusted reflectance could result in earlier or later NBAR- 
based phenometrics compared to either PhenoCams or field observa-
tions. However, the benefits correcting view angle effects outweighed 
the potential phenology related drawbacks. 

A unique characteristic of the SEFR field data was that vegetation 
was assessed for functional groups as opposed to individual species. 
Temporal trends in functional groups coincided with LSP estimated from 
GEE image fusion at the grassland site and most of the open-pine sites. 
Additionally, EOS estimates derived from the GEE image fusion dataset 
closely corresponded with the dates when the dominant functional 
groups transitioned to a senescent state. Some LSP studies have found 
good SOS correspondence with field data but poorer correspondence 
with EOS estimates (Friedl et al., 2010; Ganguly et al., 2010). Field- 
based estimates of SOS and EOS typically do not account for 

Fig. 10. The SEFR transects sampled in grassland sites for the 2017 growing season. The top panel shows percent cover by functional group at the four sites 
(transects). The bottom panel shows the proportion of vegetation in each phase by functional group. In both panels, vertical lines show the phenometrics estimated 
from the GEE image fusion’s NDVI time-series, including start of green-up (SOG), start of season (SOS), end of season (EOS), and dormancy (Dorm). In both panels, 
lines may overlap for functional groups with little aerial cover (i.e., those with cover recorded in the 0–10% class or low proportion in a given phase; e.g., shrub in 
transect 5 or, at day of year 100 in transect 5, grass in the cured phase). 
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herbaceous understory vegetation when making comparisons to 
satellite-based estimates (Nijland et al., 2016). In the SEFR open pine 
and grassland sites it appeared that this herbaceous component was 
indicative of the EOS and dormancy metrics estimated from the satellite 
data (Fig. 9, Fig. 10). However, this herbaceous understory signal was 
obscured when overtopped by high tree canopy cover (e.g., mixed- 
conifer sites; Appendix 4). 

Our validation with ground-based observations and near-surface 
camera data highlights some of the challenges and opportunities with 
applying these datasets for LSP studies. Comparisons between satellite 
LSP and PhenoCam estimates may also benefit from the utilization of 
sensors in PhenoCams that capture wavelengths more similar to those 
used in multispectral satellites. For example, sensors with a near- 
infrared band are more capable of observing vegetation structural 
changes (Filippa et al., 2018; Luo et al., 2018; Petach et al., 2014) and 
these types of sensors have been demonstrated to provide reasonable 
correspondence with LSP from multispectral satellite observations 
(Eklundh et al., 2011). 

The comparability of field-based observations to LSP has historically 
been limited due to mismatches in scale and observation method 
(Hufkens et al., 2012); for example, budburst of a species vs. aggregate 
vegetation within a pixel. Mismatches in scale and observation method 
may be partially resolved by downscaling LSP to resolutions more 
attainable by field studies. Correspondence between satellite LSP and 
functional group phenology warrant further investigation to assess if 
field data collection of functional groups is preferable to species-level 
assessments. 

4.3. Future directions and potential applications 

Implementation of an ESTARFM-like image fusion algorithm in GEE 
was not without its challenges. Moving windows are not ideal for a 
platform designed to divide datasets into smaller units for parallel 
computation. Recently, Moreno-Martínez et al. (2020) implemented a 
bias-aware Kalman filter method in GEE for fusion of Landsat and 
MODIS, which produces a monthly gap-filled 30-meter product across 
the United States. The integration of deep learning libraries like Ten-
sorFlow (Abadi et al., 2015) with GEE also offers new possibilities for 
further innovation in image fusion methods, potentially building upon 
current deep learning methods for image fusion (Song et al., 2018), 
while taking advantage of the cloud computing infrastructure of GEE. 

The phenometrics extracted from the GEE-image-fusion time series 
represented some grassland, shrubland, and open-pine patterns in this 
study. However, not all landcover types were adequately captured, such 
as dense conifer forest and agriculture. Sensitivity of NDVI to fluctua-
tions in vegetation biomass or the double logistic function’s ability to 
adequately model the development patterns of vegetation may account 
for challenges in these landcover types. As opposed to using a single 
index like NDVI, a multivariate perspective of phenology could be 
considered, which would allow for temporal patterns of different spec-
tral bands or indices to be captured simultaneously (Pasquarella et al., 
2016). Many other methods for phenometric extraction exist (Zeng 
et al., 2020) and could be used for vegetation with temporal patterns 
that are difficult to characterize with a double-logistic function. For 
example, in agricultural areas it may be necessary to employ a method 
capable of characterizing multiple crop cycles within a single year. 

Capturing intraannual LSP may also help ecologists studying rapidly 
changing ecosystems, like those where species invasions lead to shifts in 
plant community composition (D’Antonio and Vitousek, 1992; Gun-
derson, 2000; Kerns et al., 2020). Phenometrics from GEE image fusion 
could be used to identify the distribution of exotic annual grasses. The 
distinct phenological traits (Wallace et al., 2015) and rapid colonization 
from Ventenata dubia in the interior Pacific Northwest (Kerns et al., 
2020) may present this methodology’s ideal application. Phenological 
patterns have been employed to identify and map populations of other 
invasive annual grasses in the western United States, however data used 

in these studies was limited in spatial resolution (Boyte and Wylie, 2016; 
Bradley et al., 2017). Limited spatial resolution presents a challenge in 
identifying small grass populations across spatially heterogenous land-
scapes. Additionally, annual grass species strongly respond to year-to- 
year climatic variation (Pilliod et al. 2017) and represent a substantial 
proportion of surface canopy cover in some shrubland, grassland, and 
open pine communities (D’Antonio and Vitousek 1992). Thus, in 
temporally dynamic situations, intraannual LSP estimates may be useful. 
The availability of high-spatial and high-temporal resolution estimates 
of LSP over the last two decades may also provide an opportunity to 
track the unique characteristics of this rapid plant invasion over time. 

5. Conclusions 

This study addressed two challenges in estimating vegetation 
phenology at ecologically meaningful spatial and temporal scales. 
Employing spatio-temporal image fusion on a cloud-computing platform 
like GEE is feasible and can produce high-quality predictions in 
reasonable timeframes. We found that GEE image fusion predictions 
were accurate and similar to those produced by a locally run version of 
ESTARFM. Furthermore, using a time series enhanced with the addi-
tional data from the image-fusion process can lead to LSP estimates that 
coincide with plant development patterns in shrubland, grassland, and 
open-pine land-cover types. We showed that satellite-LSP estimates 
aligned with the phenology of dominant functional groups at some field 
sites. However, we found that NDVI-derived phenometrics from satellite 
data and GCC-derived phenometrics from PhenoCam data did not closely 
align, which could be attributed to spectral, sun-sensor angle, and cloud- 
cover differences between the two datasets. 

Characterizing LSP in semi-arid regions like the interior Pacific 
Northwest continues to be challenging, especially within conifer domi-
nated areas and when cloud cover prevents surface observation in the 
early growing season. Incorporation of data from satellites like Sentinel- 
2 and continued efforts to improve image fusion on cloud-computing 
platforms can help to overcome some current data limitations. 
Capturing intraannual vegetation development patterns can continue to 
provide insight into meaningful and useful processes as they play out 
across landscapes now and in the future. 
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Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jag.2021.102323. Additionally, the Python code devel-
oped to perform image fusion on Google Earth Engine can be found on 
Github (https://github.com/tytupski/GEE-Image-Fusion) or Mendeley 
Data (https://doi.org/10.17632/bcbptkrbsg.1). 
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