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Low-intensity fires mitigate the risk of high-intensity
wildfires in California’s forests
Xiao Wu1*, Erik Sverdrup2, Michael D. Mastrandrea3, Michael W. Wara3*, Stefan Wager2*

The increasing frequency of severe wildfires demands a shift in landscape management to mitigate their con-
sequences. The role of managed, low-intensity fire as a driver of beneficial fuel treatment in fire-adapted eco-
systems has drawn interest in both scientific and policy venues. Using a synthetic control approach to analyze 20
years of satellite-based fire activity data across 124,186 square kilometers of forests in California, we provide
evidence that low-intensity fires substantially reduce the risk of future high-intensity fires. In conifer forests,
the risk of high-intensity fire is reduced by 64.0% [95% confidence interval (CI): 41.2 to 77.9%] in areas recently
burned at low intensity relative to comparable unburned areas, and protective effects last for at least 6 years
(lower bound of one-sided 95% CI: 6 years). These findings support a policy transition from fire suppression to
restoration, through increased use of prescribed fire, cultural burning, and managed wildfire, of a presuppres-
sion and precolonial fire regime in California.
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INTRODUCTION
Wildfires have emerged as a critical climate adaptation and public
safety issue in a number of regions, including the western United
States, as the human and economic costs due to wildfires and the
area burned at high severity have substantially increased over the
past decades (1). These changes have coincided with large increases
in loss of life, structure loss (2), and human health impacts due to
wildfire smoke (3). Causes for these increased impacts include
changes in the western hydroclimate (4), changes in the duration
of wildfire season and the probability of fire weather (5), and the
history and legacy of landscape management in California (6).
Proxy reconstructions of precolonial fire activity—a combination
of wildfire and cultural burning by Native Americans—indicate a
much greater extent and frequency of low-intensity wildfire than
during the last century (7, 8). Increased wildfire impacts have led
to a much greater focus by state and federal land managers, fire ser-
vices, utilities, and private landowners on reducing wildfire risks for
both landscapes and communities (9–11). Policymakers broadly
agree that a fundamental shift in landscape management approach
will be required to reduce the consequences of wildfires (9, 10).

The consensus on how to address the growing societal impacts of
wildfire focuses on fuel treatments with mechanical thinning, pre-
scribed fire, and managed wildfire as principal components (9, 10).
Legal, operational, and cost constraints limit the applicability of me-
chanical thinning treatments to specific contexts while approaches
involving the reintroduction of fire to landscapes may have wider
applicability (12). However, despite the preeminent role of pre-
scribed and low-intensity fire in current wildfire management
policy and planning, their beneficial effects on limiting the likeli-
hood of future high-intensity fires have only been demonstrated
in a small number of studies with a highly localized focus.

Fighting fire with fire
Multiple case studies indicate that the resilience of western North
American forests depends critically on the presence of fire at inter-
vals and at intensities that approximate presuppression and preco-
lonial conditions that existed prior to the extirpation of Native
Americans from ancestral territories in California in the 1850–
1870 period (6). A watershed in Yosemite National Park where nat-
urally ignited wildfires have been allowed to burn without suppres-
sion exhibited increased landscape heterogeneity, improved
resilience to fire and drought-related disturbance, and increases in
soil moisture and runoff (13). Precolonial forests in the Klamath
region were ecologically stabilized because of a combination of in-
digenous cultural burning (i.e., the intentional application of fire to
land by Native American tribes, tribal organizations, or cultural fire
practitioners to achieve cultural goals or objectives, including sub-
sistence, ceremonial activities, biodiversity, or other benefits) and
lightning ignitions up to colonization (6). Fire behaviors in the
Gila-Aldo Leopold Wilderness Complex in New Mexico and the
Frank Church - River of No Return Wilderness in Idaho have
been shown to be shaped by the presence or absence of prior wild-
fires (14). Evidence from the 2021 Dixie Fire, the largest single fire
to date in California history at 3900 km2 of burned areas, indicates
strong controls on undesirable fire from past fires that had burned
within its footprint (12). Additional regional studies have shown ev-
idence for the legacy effect of disturbance processes, including the
use of wildfire and prescribed fire, on enhancing fire resilience,
under moderate fire weather conditions (15–17); however, these
studies have been limited to specific geographic subregions and
small numbers of wildfires and have not quantified the magnitude
and duration of the protective effect of such fire.

The goal of this paper is to provide a unified analysis of fire dy-
namics across California’s forests, based on 20 years of continuous,
satellite-based monitoring of wildfires. We consider data from all
fires detected by satellite monitoring in California’s conifer and
hardwood forests during our study period. Using these data, we
seek to measure whether areas that burn at low intensity are less
likely to experience high-intensity wildfire in the future—and
how long any such protective effect lasts. Operationally, we collect
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and harmonize satellite data from various public geospatial data
sources, including Moderate Resolution Imaging Spectroradiome-
ter (MODIS) Active Fire Products Collection 6.1 (MCD14ML)
(18), Daymet Daily Surface Weather Data V4 data products (19),
California’s Disturbance Agents and Fractional Vegetation Cover
Dataverse (20), and Global Multi-resolution Terrain Elevation
Data (GMTED2010) (21). We categorize every detectable fire
based on its fire intensity, which refers to the energy release of
each fire, and use a physical measurement directly estimated from
MODIS. Fire intensity correlates with, but differs from, fire severity,
which primarily measures above-ground biomass disruptions (see
the Material and Methods for details). We then conduct a counter-
factual analysis using the synthetic control approach, a modern, in-
terpretable quasi-experimental design for causal inference (22).

We emphasize that our study measures the overall protective
effect of any low-intensity fires, not just prescribed fires. During
our study period, only 9.5% of wildfires in forests were recorded
as prescribed fires (23), and thus, only considering the effects of re-
corded prescribed fires would not have given us sufficient statistical
power to measure meaningful effects. The relevance of our study in
informing policy regarding prescribed fire relies on an assumption
that low-intensity wildfire and prescribed fire have similar effects on
forest ecosystems. This assumption has support in the literature: For
example, Taylor et al. (12) find that low-severity wildfires and pre-
scribed fires have similar effects in reducing surface fuels, modifying
the age structure of a forest, and maintaining separation of the tree
canopy from fires with low flame lengths that remain close to the
ground and thus create similar beneficial ecological and fuel treat-
ment effects.

The purpose of fuel treatments is not to exclude all future fires,
but rather to increase the likelihood that, upon the inception of a fire
within a designated area, the fire remains low to moderate intensity
and exhibits a reduced rate of spread. This mitigation strategy pro-
vides windows of opportunity for control through the allocation of
additional suppression resources and reduces the potential for the
fire to develop into a high-intensity fire (24). Low- to moderate-in-
tensity fire has beneficial ecosystem effects and is much easier to
manage for the protection of communities and critical

infrastructure. Under the most extreme conditions, even the best
fuel treatments may fail to prevent high-intensity fires with the po-
tential for substantial impacts on both the ecosystem and human
welfare; however, they can increase the chance that fire services
are able to manage their impacts (24). Our purpose here is to quan-
tify the magnitude and duration of potential beneficial impacts of
low-intensity fires in protecting against future high-intensity fires.

RESULTS
To quantify the effect of fire that burned at low intensity on land-
scapes in a given year, we need to assess how these landscapes might
have evolved had they not burned in that same year and compare
these counterfactuals to their actual evolution. Prior work has
done this using specific examples, e.g., by examining the effect of
past prescribed fires on a subsequent large wildfire in the southern
Cascade Range in California (25), but has not attempted to synthe-
size evidence across time, multiple geographies, and fuel types. To
facilitate the counterfactual comparisons, we tailor the well-estab-
lished synthetic control method to create a weighted set of unex-
posed areas (i.e., synthetic controls) that maintain similar historic
trajectories on fire behaviors and topography, meteorological, dis-
turbance, and vegetation conditions as the exposed area (22, 26, 27).

Figure 1 illustrates the quasi-experimental design under the syn-
thetic control method, in which we divide the time horizons of each
area into three periods: (i) pre-focal period, in which we use pre-ex-
posure covariate trajectories to construct synthetic controls; (ii)
focal period, in which we define exposed and unexposed units
based on fire status during this period; and (iii) evaluation period,
in which we evaluate the impact of fire exposure evolving over years.
We produce the synthetic controls via a covariate balancing weight-
ing algorithm, which is computationally efficient enough to be able
to accommodate large-scale satellite-based data (28–30).We require
a minimal 8-year pre-focal period to allow synthetic controls to be
sufficiently comparable to exposed units in relatively long historic
trajectories, which is why the first focal year starts in 2008.

Fig. 1. Overview of the quasi-experimental design. Exposed and unexposed units are defined by fire status within a focal period. We create synthetic controls as a
weighted set of unexposed pixels that maintain similar trajectories on fire behaviors and topography, meteorological, disturbance, and vegetation conditions, as the
exposed pixel set during the pre-focal period. These synthetic controls are then used as counterfactuals in the evaluation period to estimate the effects of low-intensity
fires on future fire frequency and intensity.
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Results on the magnitude and duration of fire risk
reduction
For the focal period 2008–2020, we found substantial and statisti-
cally significant reductions in high-intensity fire risks following
low-intensity fires, although the effect magnitude varies across
land cover type and fire outcome class.

In conifer forests, areas that have recently burned at low intensity
are 64.0% [95% confidence interval (CI): 41.2 to 77.9%] less likely to
burn at high intensity in the following year relative to unburned
synthetic control areas. This protective effect against high-intensity
fires persists for at least 6 years (lower bound of one-sided 95% CI: 6
years). The construction of CIs is described in the Supplementary
Materials. Our findings are robust to whether we consider high-in-
tensity fire events only or combine moderate- to high-intensity fire
events together as the outcomes of interest. On the other hand, the
effect of low-intensity fire in reducing all future fires (of any inten-
sity) is much more muted. In conifer forests, we find a smaller (yet
still statistically significant) 16.4% (95% CI: 2.4 to 28.3%) reduction
in the risk of any fire following low-intensity burn relative to un-
burned synthetic control areas, and this effect persists for at least
5 years (lower bound of one-sided 95% CI: 5 years).

Our findings in hardwood forests are comparable to those in
conifer forests, except with weaker statistical significance (partially
due to a smaller sample size).We again find that areas burned at low
intensity 1 year earlier are approximately half as likely to burn at
high or moderate-to-high intensity than unburned synthetic
control areas, although (likely due to sample size issues) the result
is not statistically significant for the high-intensity fire outcome.We
are not able to detect any protective effect of low-intensity fires on
overall future fires in hardwood forests.

Figure 2 shows the estimated trajectories of fire risk reductions
up to 9 years following low-intensity fires, stratified by land cover
type and fire outcome class. In the Supplementary Materials, we
show that the effects are robust under sensitivity analyses that
change focal year spans, alter classification schemes for fire intensi-
ty, and compare different definitions of fire intensity and severity.

In summary, our finding that low-intensity fire offers years of
protection against future high-intensity fire—but does not neces-
sarily prevent all future fire—is well in line with our knowledge of
the climate and ecosystems in California. It is well understood that
the low-elevation pine and mixed conifer forests in California can
burn at low intensity even just one growing season postfire—and
the ecosystem is well adapted for such frequent, low-intensity
fires (31–33). On the other hand, high-intensity fires happen
when an overgrown understory enables the fire to climb into the
crowns of mature trees (6); and, in this context, our results
suggest that low-intensity fires help, on average across California,
control the amount of available fuels in a way that persists (and pro-
tects against high-intensity fires) for many years.

Policy outlook
Our approach illustrates, in the context of California’s forest ecosys-
tems, the benefits of using prescribed fires and managed wildfires
that burn at low intensity as tools to mitigate the risks from high-
intensity wildfires, i.e., fires of the type that have led to increasingly
adverse impacts on both the ecosystem and human welfare in Cal-
ifornia and other jurisdictions. Our results allow accurate quantifi-
cation of the risk mitigation value and duration of investments in
prescribed fire and managed wildfire. We find that the protective

effects of low-intensity fire are strong but decay over the course of
a decade, consistent with existing studies (34–36), implying that
prescribed fire treatments are better thought of as periodic mainte-
nance rather than a one-time intervention for forests that are adja-
cent to communities or critical infrastructure. To be effective,
investments in restoring low-intensity fire to forest ecosystems in
California need to be structured to recur on a periodic and
ongoing basis.

The findings of this study have important policy implications
related to land management and utility planning. At present, the
U.S. Congress is working on the reauthorization of the U.S. Depart-
ment of Agriculture programs through the Farm Bill (37). A crucial
aspect of this undertaking involves examining improvements to the
U.S. Forest Service programs governing fuel treatments, and the U.
S. Forest Service has proposed treating nearly 200,000 km2 over the
upcoming decade through a mixture of fuel treatment strategies (9).
Our study provides a quantification of the potential benefit that in-
creased investment in fuel treatments could yield at a scale of geog-
raphy as large as California. The results of our study provide a
foundation for future evaluation of wildland fuel treatments by
comparing the quantified benefits to potential costs and risks asso-
ciated with its implementation. It not only illustrates how the inten-
tional reintroduction of low-intensity fire via prescription, cultural
burning, and managed wildfire could potentially lead to a substan-
tial reduction in the occurrence of high-intensity wildfires, improv-
ing health, societal, and ecological outcomes for people,
communities, and ecosystems across the western United States
but also illustrates the potential limitations of such a policy if not
sustained over time.

Likewise, California has proposed a substantial expansion of
treated areas, increasing to 2000 km2 annually on state and
private lands (10). Assuming that all such areas were treated with
prescribed fire and that, as suggested by our results, the protective
effects last for at least 5 to 6 years, this implies the state could achieve
ongoing protective effects on the order of 10,000 km2 of forest lands
if the program was sustained. However, given that there are roughly
125,000 km2 of forests in California, of which half are state or pri-
vately owned, the risk mitigation benefit of this intervention will
depend heavily on careful selection and targeting of the intervention
to provide maximum protection for people, communities, and
ecosystems.

Our results, by quantifying both the magnitude and duration of
the protective effect of low-intensity wildfire on future high-inten-
sify wildfires, also pave the way for comparing wildland fuel treat-
ments with other forms of wildfire mitigation, such as home
hardening, shaded fuel breaks, or utility ignition avoidance in
terms of both hazard reduction, risk mitigation, and cost-effective-
ness. On the basis of our findings, and assuming that low-intensity
fire is a reasonable proxy for prescribed fire, our results suggest a
considerable hazard and risk mitigation effect through the regular
use of prescribed fire. Furthermore, our results indicate a future di-
rection for the evaluation of prescribed fire interventions and a
comparison with other approaches aimed at improving future wild-
fire outcomes.

While our results highlight the potential benefit of prescribed
fire in mitigating future high-intensity wildfires, they do not
capture the full risk-benefit assessment of prescribed fire. Pre-
scribed fires do occasionally escape prescription and cause wide-
spread losses, as evidenced by recent examples like the Calf
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Canyon and Hemet’s Peak fires in New Mexico (38). In addition,
just like unmanaged wildfires, prescribed fires emit smoke that
can subsequently result in adverse human health effects, both in
the short and long term (39–41); however, the amount of smoke
produced may be less than what would be produced by a high-in-
tensity wildfire in the same area (42). Given the growing contribu-
tion of wildfire smoke to overall air pollution in the western United
States (43), further examination of air quality trade-offs and public
health concerns at landscape scales, resulting from substantial in-
creases in prescribed fire usage, is needed (44).

DISCUSSION
This study deployed modern data science tools to quantify the pro-
tective effect of low-intensity fire against future high-intensity fire
using unified, large-scale satellite-based data of California’s forests.
We estimate the effects of low-intensity fires via counterfactual
comparisons of areas recently burned at low intensity with un-
burned synthetic control regions whose past attributes match
those of the burned regions as closely as possible. We find that
low-intensity fires substantially reduce the risk of future high-inten-
sity fires in California conifer and hardwood forests and that this
risk reduction persists for at least 5 to 6 years. This work confirms,

at a large temporal and spatial scale, earlier results from studies of
smaller numbers of wildfires.

This study has several strengths. We collected and harmonized
comprehensive large-scale spatial-temporal data derived from pub-
licly available satellite remote sensing data and we made all code for
processing and analysis of data publicly accessible to ensure repro-
ducibility and transparency of our results. We deployed a synthetic
control methodology to achieve desirable covariate balance for
long-time horizons of covariate trajectories. These methods are
considered a quasi-experimental design that can be used to
measure causal effects from observational data (22). To increase
our confidence in the results, we ran sensitivity analyses using mul-
tiple data and model choices. Overall, our study shows how synthet-
ic control methods can be used to leverage large-scale spatial-
temporal data in climate and sustainability research.

Our study also has limitations. First, as discussed above, we did
not restrict our analysis to the effects of prescribed fire alone; rather,
we used low-intensity fires as a proxy exposure, which we believe
reasonable since research has shown that prescribed fire mimics
the effects on fuels and ecosystem structure of low-intensity wildfire
(45). In the Supplementary Materials, we also demonstrate that low-
intensity wildfires and prescribed fires have similar fire-intensity
distributions. In the future, once we have access to more observa-
tions of prescribed fires, it would be interesting to repeat our

Fig. 2. Effects of low-intensity fires on the subsequent fire frequency and intensity up to nine-year lags, grouped by land cover types and fire outcome classes,
pooled across focal years 2008–2020. Two-sided 95% CIs are presented.
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analysis to measure the effect of prescribed fires alone. Second, our
quasi-experimental design measured the protective effect of low-in-
tensity fire at a location-by-location level and did not consider spill-
over effects between neighboring locations. The fact that we use a
relatively large grid size (1 km2) in our analysis partially mitigates
concerns about spillovers; for example, Taylor et al. (16) and Harris
et al. (46) argued that using grids that are at >800 m helps to reduce
the influence of spatial autocorrelation when studying wildfires.
That being said, in future work, it would still be interesting to
refine the analysis using a spatial model that incorporates how
fire propagates across neighboring areas in a landscape. The goal
of improving spatial modeling efforts by incorporating variables
representing neighborhoods was also discussed in Parks et al.
(14), Taylor et al. (47), and Estes et al. (48).

Overall, our study demonstrates that judicious use of prescribed
fire and managed wildfire can offer considerable benefits in protec-
tion against future high-intensity wildfires. This finding supports
greater analysis of and investment in the use of prescribed fire
and managed wildfire to alleviate the escalating wildfire crisis in
the western United States. It also contributes to the underlying
benefit quantification needed to estimate risk buydown and cost-ef-
fectiveness of reintroduction of fire in California forests, an impor-
tant area of future research.

MATERIALS AND METHODS
We use satellite imagery to assemble a unified fire information
dataset in California 2000–2021. The unit of analysis is a 1-km2

pixel. We define as forests all pixels categorized as either forestlands
or woodlands by the California Department of Forestry and Fire
Protection (CAL FIRE) Fire and Resource Assessment Program
(FRAP) (49), resulting in 124,186 km2 worth of data (we do not dis-
ambiguate between forestlands or woodlands in our analysis, as
CAL FIRE separates these landscape types based on land-use
rather than ecological considerations). We further stratify our anal-
ysis by vegetation type and separately consider conifer- and hard-
wood-dominated forests [again as specified in CAL FIRE-FRAP
(49)]; this results in 91,335 km2 of conifer forests and 32,851 km2

of hardwood forests. We do not include grasslands or shrublands
because of their rapid growth after a wildfire.

For each pixel, we obtain a daily estimate of fire radiative power
(FRP) from NASA’s MODIS (50). FRP can be used to quantify fire
intensity; we adapt a classification system that uses FRP to catego-
rize fire intensity into classes 1 to 5 proposed by Ichoku et al. (51).
We denote that a pixel has burned in a given year if its FRP ever
exceeds 0. We denote that a pixel has burned at high intensity if
its maximal FRP in that year exceeds 500 MW (class 3 to 5 fire),
moderate intensity if its maximal FRP exceeds 100 MW but not
500 MW (class 2 fire), and low intensity if its maximal FRP does
not exceed 100 MW (class 1 fire). Table 1 displays the relative fre-
quency of these fire types in California during our study period.

We additionally obtain topography, meteorological, disturbance,
and vegetation from various satellite-based data sources (see the
Supplementary Materials for details) (19, 20, 52). Five meteorolog-
ical covariates, including minimum air temperature, maximum air
temperatures, precipitation, snow water equivalent, and water vapor
pressure, were chosen as monthly averages to capture the seasonal
variations of meteorological conditions within a year. Other covar-
iates were chosen as the annual averages. Therefore, the analyses

account for up to d = 1383 pre-exposure covariates, including fire
behavior history, topography, meteorological, disturbance, and veg-
etation variables, to control the potential confounders changing
over time and ensure the representativeness of our constructed syn-
thetic controls.

A synthetic control study
For each focal year (2008–2020) and forest land cover type (conifer
and hardwood forests), we define an exposed region consisting of all
pixels dominated by that land cover type and that burned at low in-
tensity (class 1 fire) in the given focal year. Pixels that burned at
moderate to high intensity, i.e., with classes 2 to 5 fire, during the
focal year are excluded from the analysis. We then use pixels from
the same land cover type that did not burn in the focal year to form a
synthetic control region, i.e., creating a weighted set of unburned
pixels that, outside of their fire experience in the focal year, look
as similar as possible to the exposed region in terms of historic tra-
jectories—including fire behaviors and topography, meteorological,
disturbance, and vegetation conditions. Last, we can assess the pro-
tective effect of low-intensity fire in the focal year by comparing the
evolution of the areas burned at low intensity in the focal year with
their synthetic control region.

The validity of our approach hinges on the synthetic controls
being representative of the exposed region. The key assumption

Table 1. Annual burned area (in square kilometers) by fire intensity
classes, land cover types, and years. The fire intensity is quantified by
FRP estimated from NASA’s MODIS Active Fire Products Collection 6.1
(MCD14ML). The land cover type is defined by CAL FIRE-FRAP.

Conifer Hardwood

Class
1

Class
2

Classes
3–5

Class
1

Class
2

Classes
3–5

2001 376 66 6 102 29 6

2002 608 119 23 121 30 11

2003 601 123 17 218 99 29

2004 477 91 13 222 49 22

2005 532 87 16 112 14 3

2006 978 245 72 151 42 12

2007 644 232 81 212 109 32

2008 2854 631 104 475 138 35

2009 642 154 31 151 43 17

2010 316 34 1 70 9 1

2011 414 82 8 92 8 0

2012 937 384 92 169 58 9

2013 927 477 142 193 77 19

2014 1133 434 142 157 44 15

2015 1500 447 110 282 137 42

2016 555 166 37 292 126 29

2017 1515 478 94 514 258 80

2018 1835 813 259 670 322 81

2019 451 121 39 139 43 12

2020 3720 2559 1044 1417 735 196
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underlying the causal validity of this synthetic control design is that,
had the exposed regions not burned in the focal year, their average
future fire behavior would have matched that of the synthetic
control region—and thus, any future divergence in fire behavior
for the exposed versus synthetic control regions is due to low-inten-
sity fire in the focal year. The validity of this assumption depends
on, first, the availability of adequate unexposed units for building
the synthetic control region that can steadily track the historic tra-
jectories of the exposed region before the intervention (53) and,

second, there being no unobserved confounders that would lead
to future divergence in the fire behavior between exposed and un-
exposed synthetic control regions.

For the first point, we assess the quality of the synthetic control
design via covariate balance to check the degree to which the distri-
butions of pre-exposure covariate trajectories are similar across ex-
posure and synthetic control regions (54). Figure 3 displays one of
these covariate balance checks for the focal year 2008; checks for
other years and individual covariates are given in the

Fig. 3. Covariate balance and exposure distribution under the synthetic control quasi-experimental design for the focal year 2008 in different land cover types
(conifer and hardwood). (A and B) show the standardized mean differences of covariate trajectories in the pre-focal period between exposed pixels and synthetic
controls, measuring their degree of covariate balance. The covariate balance is substantially improved after implementing synthetic control approaches. (C and D)
show the geographic location of exposed (red) and unexposed pixels (blue) that were used to create synthetic controls. The transparency of the blue color represents
the synthetic control weights for each unexposed pixel. Results including additional focal years are shown in the Supplementary Materials.
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Supplementary Materials. We see that, before weighting, the un-
burned pixel set (control) looks different from those that burn
(exposed) in terms of pre-exposure covariate trajectories.
However, our synthetic control approach eliminates these covariate
imbalances across a wide variety of attributes for every focal year
from 2008 to 2020.

The second point cannot be directly validated from data.
However, we examine the robustness of our results to unmeasured
confounding by calculating E values. The E value for an effect is the
minimal strength of an association, on the relative risk scale, that an
unmeasured confounder would need to havewith both the exposure
and outcome, conditional on the covariates already included in the
model, to fully explain the observed association under the null (55).
As discussed in the Supplementary Materials, our main findings
appear to be reasonably robust to unobserved confounding accord-
ing to this metric.

Last, our analysis also implicitly depends on an assumption that
the only difference in treatment between exposed and unexposed
synthetic control regions is from the exposed regions burning at
low intensity. This assumption could be threatened if California
already had extensive fire mitigation programs in place such that,
e.g., regions that did not burn recently would be prioritized for pre-
scribed burning in the next few years. However, given that pre-
scribed burns are still relatively rare within our data, it is unlikely
this is a major source of bias for our study.

Comparing the fire risks at the post-exposure evaluation period
between exposed units and synthetic controls allows us to assess the
impact of low-intensity fire on subsequent fire behaviors. To inves-
tigate long-term effects, we examine a range of evaluation periods,
spanning from 1 to 9 years following the focal year, enabling us to
study the persisting effect of the low-intensity fire exposure for up to
9-year lags. Last, we pool the estimated fire risks at the same lag from
different focal years. We build Wald-type CIs based on standard
errors estimated via a Jackknife variance estimator clustered at the
outcome-year level (56); see the Supplementary Materials
for details.

Fire intensity versus fire severity
In our analysis, we categorize wildfires by the intensity of energy
release as quantified by FRP. The FRP measurement is subject to
measurement uncertainty and errors (57), although we show that
our analysis results are robust to alternate classification schemes
for fire intensity in the Supplementary Materials. Furthermore, in
some settings, it may be more natural to focus on high-severity
wildfires that have transformative ecological impact rather than
high-intensity wildfires with high energy release. In the Supplemen-
tary Materials, we apply our proposed method using an ecological
rather than physical categorization of wildfire types. We consider
wildfires assessed as low, moderate, or high severity by theMonitor-
ing Trends in Burn Severity (MTBS) program (42). These assess-
ments capture the degree to which a site has been altered or
disrupted by fire (42). We then seek to measure the extent to
which low-severity fires help prevent future high-severity fires.
While this fire severity definition differs from the fire intensity def-
inition used in this study (and results in a meaningfully different
classification of fires), the high-level finding that prescribed fire
has the potential to prevent future fires with potentially substantial
impacts persists. Notably, the magnitudes of resulting protective

effect assessed under the MTBS fire severity categorization are
more pronounced.
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