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A B S T R A C T

Researchers and managers increasingly recognize enterprise risk management as critical to addressing con-
temporary fire management challenges. Quantitative wildfire risk assessments contribute by parsing and map-
ping potentially contradictory positive and negative fire effects. However, these assessments disregard risks to
fire responders because they only address social and ecological resources and assets. In this study, we begin to
overcome this deficiency by using a novel modeling approach that integrates remote sensing, field inventories,
imputation-based vegetation modeling, and empirical models to quantify post-fire snag hazard in space and
time. Snag hazard increased significantly immediately post-fire, with severe or extreme hazard conditions ac-
counting for 47%, 83%, and 91% of areas burned at low, moderate and high-severity fire, respectively. Patch-
size of severe or extreme hazard positively correlated with fire size, exceeding> 20,000 ha (60% of our largest
fire) 10-years post-fire when reburn becomes more likely. After 10 years, snag hazard declined rapidly as snags
fell or fragmented, but severe or extreme hazard persisted for 20, 30 and 35 years in portions of the low,
moderate and high-severity fire areas. Because forests are denser and wildfires burn with greater severity than
historically, these hazardous conditions may represent novel management challenges where risk of injury or
death to responders outweighs the benefits of directly engaging the fire. Mapping snag hazard with our meth-
odology could improve situational awareness for both decision makers and fire responders as they mitigate risk
during fire management. However, as more landscapes burn we anticipate increased responder exposure to
extremely hazardous conditions, which may further entrench the wildfire paradox as fire managers weigh
current response decisions with future challenges. Aligning land management objectives with wildfire man-
agement needs, in part by mapping responder exposure to snags and other hazards, could help overcome the
wildfire paradox and produce desirable long-term outcomes. This research also demonstrates the importance of
interdisciplinary collaboration to account for risk to all aspects of fire prone social-ecological systems as we learn
to live with fire in rapidly changing environments.

1. Introduction

Today’s wildfire environment is increasingly complex and risky
because the unanticipated and unintended consequences of historical
forest and fire management (Merschel et al., 2014; Zald and Dunn,
2018), a rapidly changing climate (Jolly et al., 2015; Abatzoglou and
Wiliams, 2016), and an expanding wildland urban interface (Haas
et al., 2013). Despite these challenges, there is increasing consensus
that more of the “right” kind of fire, at the “right” place, and “right”
time is necessary to reduce long-term wildfire risk (Moritz et al., 2014;
North et al., 2015). Recent fires can reduce the occurrence (Parks et al.,

2016), spread (Collins et al., 2009; Parks et al., 2015), and severity
(Parks et al., 2014; Larson et al., 2013) of subsequent fires. These fires
can also improve the efficiency of suppression operations in some
ecosystems (Thompson et al., 2016a, 2016b). However, little informa-
tion exists regarding the impacts of contemporary fires on responder
exposure to future hazards, despite their critical role in realizing
wildfire benefits.

Researchers and managers are leveraging technology to create new
tools that support wildfire risk management before and during an in-
cident (O’Connor et al., 2016; Dunn et al., 2017b). Quantitative wildfire
risk assessments are increasingly integrated into land and fire
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management across the western U.S. (Calkin et al., 2010; Scott et al.,
2013). One limitation to these risk assessments is their focus on social
and ecological resources, forcing incident management teams to assess
operational risks during a high pressure and time constrained decision
environment (Thompson and Calkin, 2011). Fortunately, there are
emerging tools that directly support responder safety (notably focused
on exposure to the fire itself) in advance of an incident, including
mapping suppression difficulty index (Rodriguez y Silva et al., 2014),
potential control locations (O’Connor et al., 2017), escape routes
(Campbell et al., 2017), and safety zones (Butler, 2014). Including as-
sessments of risk to fire-responders from the multitude of hazards they
encounter would further support response decisions, as well as the
development of long-term risk reduction strategies.

Tree death is an important ecological process and one of the most
evident consequences of contemporary forest fires (Franklin et al.,
1987; Reilly and Spies, 2015). Coarse woody debris functions as a long-
term nutrient and carbon store, a primary energy source for saprophyte
communities, and a contributor to long-term soil development (Harmon
et al., 1986, Tinker and Knight, 2000). Snags and logs are also critical
habitat components for a variety of fauna species (Bull et al., 1997;
Thomas et al., 1979), especially in dynamic early seral environments
(Swanson et al., 2010; Dunn and Bailey, 2012). Despite these positive
benefits, hazardous trees and snags remain one of the leading causes of
fire responder injury or death (National Interagency Fire Center, 2018),
and disturbances creating an abundance of snags exacerbates this po-
tential (Page et al., 2013). Therefore, quantifying snag hazard in post-
fire environments, and developing decision support tools (e.g. maps)
that account for spatial and temporal variation in this hazard, are im-
portant steps towards balancing ecological needs with safe and effective
wildfire response.

In this study, we quantify snag hazard for 50 years across recently
burned landscapes as part of our broader effort to address responder
exposure to hazards. We employ a novel modeling approach that in-
tegrates remote-sensing, field inventories, imputation based vegetation
modeling, and recently developed statistical models of tree mortality
and snag dynamics to combine emerging ecological knowledge with
risk management science. Our objective is to quantify snag hazard
following fire disturbance in both space and time, and describe the
anticipated impacts that elevated snag hazards may have on wildfire
management strategies and tactics when these landscapes burn again.

2. Methods

Quantifying and mapping post-fire snag hazard is a multi-step
process integrating several datasets and empirical models. Fig. 1 pro-
vides a visualization of the sequence of methods described detail in the
following paragraphs. Spatially explicit pre-fire tree lists provide the
basis for estimating the abundance, size and species of trees that may
become snags. A tree mortality model, derived from correlations be-
tween individual tree characteristics and the relative differenced Nor-
malized Burn Ratio (RdNBR) (Miller and Thode, 2007), estimates fire
effects to create post-fire snag lists. Subsequently, we use a snag dy-
namics model (snag fall and fragmentation) to capture change across
space and time. Lastly, we apply a hazard rating to the snag conditions
across the entire spatial and temporal datasets to simplify and rank
them in accordance with potential impacts to fire responders.

2.1. Study area

This study focused on fires that primarily burned ponderosa pine
(Pinus ponderosa subsp. ponderosa) and dry-mixed conifer forests along
the eastern slopes of the Cascade Mountains in Oregon, USA (Fig. 2).
Warm dry summers and cold winters characterize the climate, with
precipitation falling mostly as snow. Ponderosa pine was the dominant
disturbance-mediated overstory species at lower elevations with in-
creasing abundance of shade-tolerant species at higher elevations. Euro-

American colonization altered fire regimes and instituted management
practices that increased the abundance of shade-tolerant grand or white
fir (Abies grandis var. idahoensis and Abies concolor var. lowiana) and
Douglas-fir (Pseudotsuga menziesii var. glauca) across both forest types
beginning in the late 19th Century (Merschel et al., 2014; Johnston,
2017; Johnston et al., 2018). Douglas-fir, western larch (Larix occi-
dentalis Nutt.), lodgepole pine (Pinus contorta subsp. murrayana) and
incense-cedar (Calocedrus decurrens Torr.) are more common in dry-
mixed conifer stands with Douglas-fir and grand fir increasing in
dominance at upper elevations. We focused on six fires to capture a
diversity of fire size and burn severity patterns: 2002 Eyerly, 2002
Cache Mountain, 2003 B&B Complex, 2003 Davis Lake, 2006 Black
Crater, and 2007 GW fires (Table 1).

2.2. Spatially explicit tree and snag data

We used predictive maps of pre-fire species composition and forest
structure created using the gradient nearest neighbor (GNN) method
(Ohmann and Gregory 2002). Maps were obtained from the LEMMA
group at Oregon State University and the Pacific Northwest Research
Station (https://lemma.forestry.oregonstate.edu/). GNN is a predictive
nearest neighbor imputation method that uses field inventory data to
develop relationships between vegetation structure, multiple spectral
indices (e.g. brightness, greenness, wetness), and gridded data on to-
pography and climate. The LEMMA group used this process to produce

Fig. 1. Flowchart depicting the multi-step process for assessing spatial and
temporal snag hazard in post-fire environments. Open shapes represent spatial
data layers and shaded shapes are modeling sub-routines.
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annualized Landsat TM time-series maps from 1984 to 2010 at 30m
resolution. For this analysis imputation was based on Euclidian distance
in multivariate space derived from Canonical Correspondence Analysis
(CCA) (after Ter Braak, 1986), a direct ordination technique. GNN data
has been applied to broad-scale vegetation mapping across a wide range
of forest ecosystems for multiple objectives (e.g. Ohmann et al., 2012,
Davis et al., 2015, Reilly et al., 2018). Complete details on the GNN
mapping method are available in Ohmann et al. (2012).

2.3. Fire severity and mortality models

We extracted burn severity maps for the six fires from a mosaicked
set of Landsat TM images from 1984 to 2011 processed using the
Landtrendr algorithm (Kennedy et al., 2010; Reilly et al., 2017).
Landtrendr is a temporal and spatial normalization process using a
segmentation algorithm to smooth spectral reflectance of individual
pixels through time. This process removes noise associated with

variability in atmospheric or phenological conditions common in
Landsat scenes with different Julian dates. The normalized image stacks
were mosaicked to annual composite normalized burn ratio (NBR) grids
and we calculated RdNBR for each year using pre-fire (year −1) and
post-fire (year+ 1) to ensure Landsat scenes represented an image
before and after the fire event.

We developed individual tree mortality models for 21 tree species in
response to a fire severity gradient. Our sample included 21,513 trees
from 304 plots with pre- and post-fire field observations from the
Current Vegetation Survey (CVS) inventory of USDA Forest Service
Region 6 (Table 2). The CVS is a systematic regional inventory ad-
ministered by the USDA Forest Service in Oregon and Washington with
the first measurement from 1992 to 1997 and the second from 1997 to
2007 (Max et al., 1996). Field crews sampled these plots at various
times pre- and post-fire, so we only used plots with no evidence of a
disturbance (except the fire of interest) after the initial plot measure-
ment based on field notes and visual inspection of spectral trajectories
from the LandTrendr algorithm described above. We attributed plots,
and therefore trees, with a fire severity class based on RdNBR and
published fire severity thresholds where< 25%, 25–75%,> 75% basal
area mortality were delineated by the RdNBR thresholds where low
=<235, moderate= 235–649, and high=≥649 severity (Reilly
et al., 2017).

2.3.1. Probability of mortality
We estimated the probability of mortality of individual trees using a

generalized linear mixed model with a binomial distribution and logit
link function. Plot was included as a random effect to account for po-
sitive correlations in residuals resulting from spatial autocorrelation of

Fig. 2. A map depicting the location of the six fires used in our analysis that burned primarily in ponderosa pine and dry mixed conifer forests in Oregon’s eastern
Cascade Mountains.

Table 1
Characteristics of six fires used in this study.

Proportion of area by severity class

Fire Year Size (ha) Low Moderate High

Eyerly 2002 8987 0.31 0.30 0.39
Cache Mt. 2002 1586 0.47 0.42 0.11
Davis Lake 2003 8352 0.16 0.18 0.65
B&B Complex 2003 36,832 0.34 0.25 0.41
Black Crater 2006 3825 0.24 0.52 0.24
GW 2007 2874 0.36 0.34 0.30
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individual trees within plots. We analyzed each species independently
and included diameter at breast height (DBH), severity class, and the
number of years between the fire and post-fire sample year as fixed-
effects. We also tested 2-way interactions among these variables. We
report all 21 species we had enough data for even if they were not
present in our study area. We conducted these analyses using the lme4
package in R v 3.1.1 (Bates et al., 2015, R Development Core Team,
2014).

2.4. Temporal snag dynamics

We use an existing database of post-fire snags from a 24-year
chronosequence and the NecroDynamics model to capture snag fall and
fragmentation (Dunn and Bailey, 2015). However, we updated the
model by substituting continuous DBH data for DBH classes (Dunn and
Bailey, 2012). We estimated the probability of snag fall and snag
fragmentation from 6055 and 4458 individual sample records, respec-
tively. We used a generalized linear mixed model with characteristics
identical to those described in our mortality model. Although analyzed
on continuous data, we present results for three different snag sizes to
simplify our presentation of results regarding the effects of DBH and
time on snag dynamics.

We used our updated statistical estimates and the NecroDynamics
model to quantify changes in snag conditions across a 50-year modeling
horizon. We only had estimates of snag dynamics for ponderosa pine,
Douglas-fir, grand/white fir, and lodgepole pine so we coerced all other
species into one of these four species based on similarities in physical
characteristics and wood density. We modeled all true firs, Calocedrus
decurrens (incense-cedar), Thuja plicata (western redcedar) and Larix
occidentalis (western larch) using grand/white fir estimates, hardwoods,
Pinus albicaulis (whitebark pine) and Tsuga mertensiana (mountain
hemlock) with lodgepole pine estimates, and Pinus monticola (western
white pine) using ponderosa pine estimates. We assume snag dynamics
were consistent across post-fire topographic conditions, and use the
same fall and fragmentation rates for all severity conditions because
estimates are not available for lower fire severity classes. We also as-
sume the trends developed from the 24-year chronosequence are re-
levant to 50 years since we currently lack estimates extending that far
into the future.

2.5. Snag hazard

We were interested in developing a hazard rating system to simplify
pixel-level conditions across the post-fire landscapes. To date, no
quantitative measure of snag hazard exists so field personnel evaluate
hazardous trees during fire management operations. Therefore, we
develop our methodology from the authors firefighting experience,
consultation with current responders, and field plots of current forest
conditions. We focus on snags ≥20 cm DBH and derive our hazard
rating from snag height (potential reach) and density because these
variables directly influence the probability of a snag striking a fire re-
sponder. We estimated pre-fire median snag density and height from all
2411 different plots, weighted by their abundance across all six land-
scapes, as the typical operating environment that sets the threshold of
acceptable risk by fire responders. We used medians instead of means as
our measure of central tendency to reduce the influence of plots from
the 2003 B&B Complex and 2007 GW fires impacted by western spruce
budworm (Choristoneura occidentalis Freeman) where tree mortality
may have resulted in snag densities exceeding the typical operating
environment. Pre-fire median snag density was 30 snags ha−1 and
median height was 13.9m for snags> 20 cm DBH. We expanded the
hazard-rating matrix from these estimates and categorized pixel-level
snag conditions into one of four hazard categories with a nomenclature
following the Department of Homeland Security rating system (Fig. 3).

We attributed our spatial and temporal datasets with the hazard
rating and report summary statistics by fire severity class and incident.
We created post-fire snag lists by applying our mortality model to pre-
fire tree lists, imputed using the GNN method, at each pixel within the
burned landscape. Each tree within the pre-fire tree list was subject to
mortality based on the pixels RdNBR value and individual tree attri-
butes as per our mortality model. This creates post-fire snag lists for
each pixel across the landscape that change with time based on our snag
dynamics results. Then we attributed each pixel, for each year of ana-
lysis, with the appropriate snag hazard rating based on their snag
density and height. We extracted snag density, median snag height and
the hazard rating from each pixel across the six-burned landscapes by
severity class, for each year of modeling, to quantify temporal variation
in snag hazard associated with fire severity. We then quantified the
median snag density and median snag height, as well as the first and
third quartiles, and the proportion of pixels in each of the four hazard

Table 2
Summary statistics of tree-level data used to quantify probability of mortality for individual species based on diameter at breast height (DBH), fire severity as
captured by the relative differenced Normalized Burn Ratio (RdNBR), and number of years after the fire (Years Post-fire) when post-fire plot sampling occurred.

Species Common name N DBH (cm) RdNBR Sample time-since-fire

Mean (SD) Median Range Mean (SD) Median Range Range

Abies amabilis silver fir 165 26.7 (16.3) 24.6 7.6–82.8 1041.6 (171.6) 1048.3 194.5–1255.7 1–4
Abies concolor white fir 1022 28.9 (18.4) 25.1 7.6–140.0 573.5 (338.7) 455.5 −11.4 to 1238.2 0–8
Abies grandis grand fir 1037 27.7 (21.1) 18.5 7.6–111.3 670.3 (397.3) 730.9 −30.7 to 1256.6 0–11
Abies lasiocarpa subalpine fir 1157 21.8 (13.5) 16.8 7.6–84.6 924.1 (320.8) 1079.0 −7.9 to 1393.9 0–11
Arbutus menziesii Pacific madrone 565 24.3 (11.6) 22.1 7.6–64.5 462.4 (331.4) 298.0 37.5–1207.6 0–5
Calocedrus decurrens Incense cedar 336 29.7 (26.6) 18.7 7.6–182.9 614.7 (241.9) 636.4 60.8–1207.6 0–9
Chrysolepis chrysophylla Giant chinkapin 356 20.9 (13.9) 16.1 7.6–80.0 496.4 (368.8) 488.0 37.5–1207.6 1–5
Chamaecyparis lawsoniana Port-Orford cedar 113 38.3 (29.0) 33.3 7.6–128.3 679.2 (300.5) 829.6 60.6–969.5 1–3
Larix occidentalis western larch 229 38.0 (18.7) 37.1 7.6–104.7 516.5 (447.6) 379.4 −52.0 to 1256.6 0–11
Lithocarpus densiflorus tanoak 2145 19.7 (12.2) 15.5 7.6–113.3 436.3 (369.7) 296.1 37.0–1170.2 0–4
Pinus contorta lodgepole pine 2501 16.6 (8.6) 14.2 7.6–77.5 654.9 (474.0) 528.6 −52.0 to 1393.9 0–11
Picea engelmannii Engelmann spruce 1110 33.3 (21.6) 33.4 7.6–126.2 871.2 (361.2) 951.8 −52.0 to 1393.9 0–11
Pinus albicaulis whitebark pine 233 25.5 (13.1) 22.1 7.9–81.8 702.0 (391.0) 730.3 −7.9 to 1213.4 1–6
Pinus attenuata knobcone pine 248 19.7 (9.9) 16.1 7.6–50.0 797.9 (294.8) 956.7 42.0–1021.1 1–4
Pinus lambertiana sugar pine 302 61.0 (44.8) 49.5 7.6–176.3 643.2 (383.4) 648.3 −11.4 to 1207.6 1–9
Pinus monticola western white pine 461 23.0 (14.0) 18.0 7.6–79.2 752.5 (214.9) 829.6 3.2–1238.2 1–11
Pinus ponderosa Ponderosa pine 2451 34.5 (24.0) 30.5 7.6–142.5 437.3 (342.2) 395.0 −52.0 to 1238.2 0–13
Pseudotsuga menziesii Douglas-fir 5668 43.0 (30.5) 37.8 7.6–202.9 500.3 (357.3) 417.8 −52.0 to 1393.9 0–11
Quercus chrysolepis canyon live oak 851 17.6 (11.1) 13.5 7.6–64.0 507.9 (371.9) 432.7 37.0–1170.2 1–4
Thuja plicata western redcedar 99 35.1 (20.2) 37.1 7.9–91.4 378.8 (359.1) 219.7 3.2–1135.7 1–5
Tsuga heterophylla western hemlock 464 29.3 (18.4) 26.0 7.6–110.2 624.1 (383.7) 526.3 3.2–1135.7 1–8
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ratings for the entire dataset. Then we calculated proportion in each
severity class by fire incident to evaluate differences at the fire scale.
We also quantified absolute maximum patch size for severe and ex-
treme conditions combined, as well as the proportion of total burned
area consisting of these two most severe hazard classes. We did this on
an annual basis across the 50-year modeling horizon for each incident
using ClassStats function in the SDMTools package in R (VanDerWal
et al., 2014). We combined these hazard ratings because they both re-
present enough risk to fire responders that they warrant alternative
engagement strategies or tactics.

3. Results

3.1. Probability of mortality

We were able to create statistical models estimating the probability
of mortality for 21 species of conifer and hardwoods trees found in the
Pacific Northwest. Table 3 contains the statistical models and sig-
nificance of covariates for each species. We also include three figures as
online supplemental material depicting the response of fire-tolerant,
fire-intolerant and hardwood trees by severity class across their ob-
served DBH range. As expected, the probability of mortality increased

with increasing fire severity for all species, but the magnitude of dif-
ference by fire-severity class and relationships with DBH varied by
species.

Our analysis indicates a decreasing probability of mortality with
increasing DBH for species commonly considered fire-tolerant, in-
cluding Douglas-fir, ponderosa pine, western larch, sugar pine and
white fir. The only exception was incense-cedar where DBH did not
have a statistical correlation with probability of mortality (Table 3). We
considered white fir to be fire tolerant because it develops thick bark in
this region, especially at larger diameters. Hardwood species had a si-
milar response, but generally exhibited a higher likelihood of mortality
than fire-tolerant conifers. An interaction term between DBH and fire
severity was statistically significant for Douglas-fir and ponderosa pine,
indicating different response slopes. Additionally, we observed a sta-
tistically significant relationship with the number of years post-fire
when re-measurement occurred, indicating delayed mortality for Dou-
glas-fir, canyon live oak, and tanoak. For modeling purposes, we at-
tribute tree mortality up to 10-years post-fire (or maximum number of
years sampled post-fire, whichever is smaller) as fire-related and cap-
ture them in our models when quantifying tree mortality across the
burned landscapes.

In contrast, the majority of species commonly considered fire-

Fig. 3. The snag hazard-rating matrix based on median snag height and snag density. The median snag density across the six fires used in our analysis was 30 snags
ha−1, with a median height of 13.9 m. We built the rating system from those values, assuming they represent acceptable conditions in fire management.
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intolerant did not exhibit statistically significant correlation with DBH,
suggesting they do not develop increased fire tolerance with increasing
size (Table 3). The exceptions were grand fir, lodgepole pine and
western hemlock. Unexpectedly, grand fir estimates were nearly
equivalent to white fir, a species commonly thought to be more fire-
tolerant, which may be a function of hybridization in our study area.
These fire-intolerant species exhibit higher likelihood of mortality in all
severity classes, with zero or few individuals surviving high-severity
fire. In many cases, the differences between fire severity classes were
low as indicated by overlapping error bars (see online supplemental
material). Only western redcedar had a statistically significant re-
lationship with the number of years post-fire when re-measurement
occurred, suggesting they too exhibit measureable delayed mortality
that is accounted for in our modeling as described previously.

3.2. Temporal snag dynamics

The cumulative probability of snag fall increased with the number
of years-since-fire, and varied by species and DBH (Table 4). Larger
snags were more likely to remain standing than smaller snags across all
species, with Douglas-fir having the lowest probability of falling
(Fig. 4). The interaction term between species and years-since-fire was
statistically significant as the slopes of the trend lines varied. Half-life
estimates (i.e. year when 50% of the snag population has fallen) pro-
vide a metric for comparing fall rates across populations of interest and
among studies. Half-lives for small ponderosa pine snags (20 cm DBH)
were 9–10 years, medium snags (40 cm DBH) were 13–14 years, and
large snags (80 cm DBH) were 22–23 years. Half-lives for small lodge-
pole pine snags were 8–9 years and 10–11 years for small and medium
snags, respectively. We did not encounter large lodgepole pine snags in

our sample. Half-lives for small grand/white fir snags were 11–12 years,
medium snags were 14–15 years, and large snags were 21–22 years.
Lastly, half-lives for small Douglas-fir snags were 16–17 years, medium
snags were 21–22 years, and large snags were 31–32 years. Table 4
provides coefficients for the significant predictor variables and random
error terms for estimating the cumulative probability of fallen snags on
the logit scale. The plot random error term was statistically significant,
indicating additional environmental effects influence snag fall at that
scale (e.g. wind events).

The cumulative probability of snag fragmentation increased with
time-since-fire, but varied by species and DBH. We also observed an
interaction between DBH and species (Table 4). In general, the re-
lationship with DBH and time was opposite that for fall rates as larger
snags were more likely to fragment. However, we observed little var-
iation by diameter for lodgepole and ponderosa pine. Ponderosa pine
generally had the highest fragmentation rates with exception of the
large grand/white fir that also fragmented rapidly (Fig. 4). The majority
of smaller DBH snags fell before fragmenting. Table 4 provides coeffi-
cients for the significant predictor variables and random error terms for
estimating the cumulative probability of snags with broken tops on the
logit scale. We estimated changes in snag height over time from the
same data and included in the NecroDynamics model. We encourage
those interested in more details regarding snag dynamics to review
Dunn and Bailey (2012, 2015).

3.3. Snag hazard

We observed a positive relationship between fire severity and
median snag density and height as more and larger trees were killed
(Fig. 5). Median snag density (1st and 3rd quartile) was 38 (14, 90),
127 (69, 215) and 241 (153, 383) snags ha−1 immediately following
low, moderate and high-severity fire, respectively. Median snag height
was 16.1 (12.8, 19.8), 17.4 (14.1, 20.4), and 18.6 (16.0, 21.3) im-
mediately following low, moderate and high-severity fire, respectively.
These snag conditions resulted in an increasing proportion of higher
hazard ratings as fire severity increased. For low-severity fire areas,
29%, 18%, 14% and 39% had a hazard rating of extreme, severe, ele-
vated and guarded, respectively. Following moderate-severity fire,
66%, 17%, 6% and 10% had a hazard rating of extreme, severe, ele-
vated and guarded, respectively. After high-severity fire, 86%, 5%, 3%
and 6% had a hazard rating of extreme, severe, elevated and guarded,
respectively. As fire severity increased so too did the time that severe
and extreme hazard conditions persisted. Low-severity fire areas re-
tained some severe and extreme conditions for up to 20 years, mod-
erate-severity up to 30 years, and high-severity up to 35 years. It is also
important to note that the rapid decline in snag abundance began
around 10 years post-fire and lasted until 20 to 25 years post-fire de-
pending on fire severity (Fig. 4). This represents the period of highest
risk directly attributed to snag fall and fragmentation, exclusive of the
effects of burning again which would accelerate fall or fragmentation.

The spatial and temporal variation in snag hazard across fire in-
cidents depends on interactions among fire-severity and pre-fire stand
structure (Fig. 6). Fires with the largest area and longest duration with a
severe or extreme hazard rating were the 2003 B&B Complex and 2003
Davis Lake fires that also had the highest proportion of high-severity
fire (Table 1). In contrast, the 2002 Eyerly fire also burned with a high-
proportion of high-severity relative to the other fires in our sample, but
much of the landscape was non-forested. We included pre-fire estimates
of hazard ratings as well, recognizing that fire is not the only dis-
turbances affecting these forests. The effects of western spruce bud-
worms within the 2003 B&B Complex and 2007 GW fires prior to
burning are evident in the western portion of their burned area. We
include maps of the 2003 B&B Complex to demonstrate temporal and
spatial change across a burned landscape (Fig. 7). The relationship
between fire severity and snag hazard becomes evident later in the
time-series. We include additional annual time-series maps of snag

Table 4
Statistical results for snag fall and fragmentation rates as a function of time-
since-fire, species (reference group is grand fir, PICO= lodgepole pine,
PIPO=ponderosa pine, PSME=Douglas-fir), and diameter at breast height
(DBH).

Snag fall rates

Fixed effects: Estimate Std. Error z-value Pr(> |z|)

Intercept −2.975 0.239 −12.448 <0.001
Time-since-fire (yrs) 0.355 0.027 13.366 <0.001
PICO 0.137 0.615 0.223 0.824
PIPO 1.660 0.286 5.798 <0.001
PSME 0.480 0.325 1.474 0.141
DBH (cm) −0.057 0.004 −14.278 <0.001
Time*PICO 0.129 0.096 1.352 0.176
Time*PIPO −0.088 0.030 −2.936 0.003
Time*PSME −0.131 0.045 −2.881 0.004
AIC BIC logLik deviance df.resid
5090.3 5157.4 −2535.1 5070.3 6045
Random effects: # of obs: 6055 # of groups: 30

Groups: Variance Std.Dev.
plots Intercept 0.453 0.673

Snag fragmentation rates
Fixed effects: Estimate Std. Error z-value Pr(> |z|)
Intercept −5.520 0.369 −14.945 <0.001
Time-since-fire (yrs) 0.225 0.038 5.899 <0.001
PICO 1.394 0.794 1.756 0.079
PIPO 3.604 0.314 11.478 <0.001
PSME 0.814 0.270 3.020 0.003
DBH (cm) 0.085 0.006 14.847 <0.001
DBH*PICO −0.105 0.052 −2.031 0.042
DBH*PIPO −0.095 0.008 −12.513 <0.001
DBH*PSME −0.048 0.008 −5.722 <0.001
AIC BIC logLik deviance df.resid
2162.8 2226.8 −1071.4 2142.8 4448
Random effects: # of obs: 4458 # of groups: 30

Groups Name Variance Std.Dev.
plots Intercept 1.207 1.099
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hazard for multiple fires as online supplemental material.
The characteristics of each incident influenced the absolute patch

size of combined severe and extreme hazard, as well as the proportion
of burned area covered by that patch. Fire size had the greatest re-
lationship to absolute patch size (Fig. 8), amounting to 24,807 ha im-
mediately following the 2003 B&B Complex fire. The B&B Complex’s
maximum patch size was 3.75 times that of the second ranked 2003
Davis Lake fire in our sample (B&B Complex was 4.41 times the total
extent of the Davis Lake fire). However, fire size was not the only im-
portant factor as fire severity, pre-fire forest structure and composition
played an important role, particularly concerning temporal trends. For
example, the 2003 Davis Lake fire had the highest proportion (0.65) of
high-severity fire among all fires investigated. Davis Lakes’ high-se-
verity areas primarily formed as a single contiguous patch that directly
translated into the highest single patch of severe or extreme snag ha-
zard (79.1% of the burned area). A review of the pre-fire forest struc-
ture and composition showed that much of the Davis Lake high-severity
patch burned through old-growth stands with large trees. These snags
stand longer (Fig. 4), and combined with the large contiguous patch of
high-severity fire, resulted in the Davis Lake fire’s maximum patch size
being the most persistent and eventually largest over time (Fig. 8). In
contrast, the 2002 Eyerly fire contained significant area of non-forest
vegetation, breaking up the patches of severe and extreme snag hazard
such that only 24.0% of the burned area was in a single contiguous
patch. Immediately following the 2002 Cache Mt. fire with the lowest
overall fire severity, only 27.2% of the burned area formed a contiguous
patch of severe or extreme snag hazard rating.

4. Discussion

In this study, we demonstrated a methodology for characterizing
and mapping snag hazard to fire responders in recently disturbed for-
ests (Fig. 1). We were able to map snag hazard across burned land-
scapes by integrating pre-fire remote-sensing, field inventories, and
imputation based vegetation modeling with empirically derived mor-
tality models. Subsequently, we projected the spatial distribution and
magnitude of snag hazards into the future using the recently developed
NecroDynamics model (Dunn and Bailey, 2015). This process demon-
strates how interdisciplinary collaboration can further our adaptation

to future fire and climate change, in part by recognizing the importance
of the fire management system in addressing these challenges
(Thompson et al., 2015; 2018). Our results offer important insights
regarding the consequences of dynamic snag hazard on near and long-
term wildfire risk.

Snag hazard increases significantly in post-fire environments and
may be creating novel management challenges not encountered over
the past 50+ years. Hazardous fuel, stand densities, and susceptibility
of trees to death from fire has increased over the past 100+ years as the
consequences of past forest and fire management policies and practices
interact with warmer, drier conditions that promote more extreme fire
behavior in denser forest environments (Naficy et al., 2010; Stephens
et al., 2014; Jolly et al., 2015). Fire severity is higher than observed
historically in many forest types, resulting in more and larger diameter
snags than encountered when Euro-American colonization altered dis-
turbance regimes with an aggressive fire suppression paradigm
(Johnston et al., 2018.) (Fig. 5). High snag densities and larger snags
with a greater fall-reach, wider crowns, and greater mass increase re-
sponder exposure to this hazard. Larger snags also persist longer on the
landscape (Fig. 4), increasing the probability that another ignition will
occur within a severe or extreme snag hazard area. Furthermore, the
onset of large or mega-fires in recent decades increases the overall
extent of burned landscapes (Stephens et al., 2014), including the ab-
solute patch-size of high-severity fire (Reilly et al., 2017; Stevens et al.,
2017). Given the relationship between fire size, patch-size, fire severity
and snag hazard (Figs. 5 and 8), we are likely to continue to observe an
increase in responder exposure to snag hazard into the future. Insect
outbreaks (e.g., bark beetles), drought, and other non-fire mortality
factors compound these conditions across many forest types (Meddens
et al., 2012; McDowell et al., 2015).

Snags directly affect safe and effective wildfire response during all
stages of incident management. First responders may not be able to
engage directly with an ignition because of snags, especially when they
are on fire. Burning increases the likelihood that all or a portion of a
snag will fall, reducing opportunities to extinguish the fire immediately.
Fire responders may have to wait until the burning snag falls before
constructing a containment line around it. Accessing the point of igni-
tion may require travel through hazardous areas (Fig. 8), further ex-
posing responders to injury or death. Therefore, pursuing alternative

Fig. 4. Probability of snag fall and fragmentation by species for three different DBH snags (20 cm, 40 cm, and 80 cm DBH). Higher slopes represent an increase in risk
of injury or death from snag fall or fragmentation. The plus sign was placed at a 0.5 probability and 24 years post-fire for reference. 24 years was the oldest sample
year in this chronosequence, although we project to 50 years.
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response tactics may be necessary and snag hazard maps could help
facilitate more rapid risk-informed decisions.

Hazardous snag conditions also affect large fire response strategies
and tactics. Desired control lines may fall within a previously burned
area with a severe or extreme snag hazard rating. Pursuing a strategy
that uses this control line would require extensive hazard mitigation
that consumes time and resources while increasing responder exposure.
These conditions may also compromise escape routes and safety zones,
and increase responder exposure during mop-up since fire weakens
snags. In fact, responders often spend extensive time mopping up a fire
as much as 90m inside a control line, where snags> 150m inside the
control line are a threat. Mapping snag hazard, and overlaying it with
potential control locations (O’Connor et al., 2017) could help fire
managers make risk-informed strategic response decisions that balance
responder exposure with likelihood of containment success.

Opportunities to mitigate snag hazard during an incident may be
limited across much of the landscape because of an abundance of snags
and their felling complexity. Felling snags is more complex than live
trees because of uncertainty in holding wood strength, the distribution

of weight throughout the snag, and the potential for tops to break
during cutting. Exposing responders to this hazard elevates risk of in-
jury or death, leaving avoidance as the less risky mitigation strategy.
This could amount to avoiding large portions of a landscape (Fig. 7),
particularly after 10 years when reburn becomes more likely and snag
fall rates increase (Collins et al., 2009; Parks et al., 2015). In fact, our
estimates suggest> 20,000 ha, or 60% of the burned landscape in our
largest sampled fire at 10 years post-fire, may have conditions where
exposure outweighs the benefits of engagement (Fig. 8). Mapping snag
hazard as we have done here improves situational awareness for both
decision makers and fire responders during strategic response devel-
opment and the ensuing tactical response.

4.1. Long-term wildfire risk management

Risk management and risk sharing provide important foundational
principles and practices for long-term wildfire risk reduction (Dunn
et al., 2017a). Risk management (RM) is a set of coordinated processes
and activities that identify, assess, monitor, prioritize, and control risks

Fig. 5. Summary of snag characteristics and hazard by severity class. We present median snag density and height, and first and third quartiles for variability, because
of the skewed distribution of these data sets.
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that an organization does or will face. RM considers high-impact to
mundane decisions, and spans organizational to individual actions be-
fore, during, and after these decisions. RM also involves assessment and
planning well in advance of decisions and shares risk management re-
sponsibility throughout the organizational structure (Thompson et al.,
2016a, 2016b). Implementing such comprehensive wildfire risk man-
agement would align land management objectives and actions such that
they support wildfire response (Dunn et al., 2017b). This is particularly
important since managing the existing wildfire threat and im-
plementing viable mitigation options relies heavily on the fire man-
agement system and its ability to overcome the wildfire paradox
(Thompson et al., 2015). The wildfire paradox suggests positive feed-
backs from negative consequences of wildfires reinforce aggressive
suppression, despite this strategy contributing to and perpetuating the
existing problem. Until now, the real or perceived negative con-
sequences from wildfires on ecosystem resilience (Stevens-Rumann
et al., 2018) and social resources and assets (Charnley et al., 2017) were
considered the drivers of the wildfire paradox (Calkin et al., 2015). We
have demonstrated that responder exposure to snag hazard may further
entrench the wildfire paradox as fire managers consider the negative

consequences of large fires on future responder risk, especially in the
absence of other remediation. As fires accumulate across landscapes fire
responders may be forced to overcome the paradox as recently burned
landscapes ignite again and snag hazard leads to a less aggressive initial
response to minimize risk, unless political pressure leads to increasingly
risky behavior (Canton-Thompson et al., 2008). Fortunately, there are
options for proactive management actions with direct and measureable
benefits achieved as risk management aligns across land and fire
management agencies and activities.

Land managers historically addressed hazardous snags in post-fire
environments via extensive salvage logging. However, economic, eco-
logical, logistical and administrative constraints limit the spatial extent
and locations available for active management (North et al., 2015).
From an enterprise risk management perspective, salvage logging also
transfers risk from fire responders to timber harvesters, a more ha-
zardous trade (Center for Disease Control and Prevention, 2018), and is
a reactive action addressing symptoms rather than root causes. An al-
ternative is targeted treatments along potential control locations
(O’Connor et al 2017), which could break up the severe or extreme snag
hazard landscape (Fig. 8), supporting safe and effective response by

Fig. 6. Temporal trends in snag hazard for six fires represented as the proportion of landscapes in each of the hazard rating classes.
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minimizing exposure while reinforcing the most likely large fire con-
tainment lines.

Proactive management actions can address the root causes of in-
creased snag hazard in post-fire environments. Forest restoration or
hazardous fuels reduction reduces tree density and decreases tree
mortality by increasing the fire tolerance of residual trees while redu-
cing fire intensity (Agee and Skinner, 2005). These treatments are
limited by the same constraints noted previously, so prescribed fire or
managing wildfires for resource objectives may be the most effective
strategy for achieving these fuels reduction benefits. Wildfires burning
during low and moderate fire weather conditions would promote lower
severity fire, reducing the abundance and patch-size of severe and

extreme snag hazard (Figs. 5 and 8). Prescribed fire and managing
wildfires for resource objectives could be extended to the post-fire en-
vironment with a burn-the-burn strategy, especially in low- and mod-
erate-severity areas. Doing so could minimize the probability of fire
occurrence in high-severity fire areas by inhibiting fires spread into
them, while also helping to contain a fire ignited within. Reburning
landscapes also reduces snag hazard in the short and long-term by in-
creasing fall rates of existing snags, and preventing the development of
forest conditions that exacerbate snag hazard in post-fire environments.
Ultimately, aligning land management decisions with more of the
“right” kind of fire in the “right” places at the “right” time with the goal
of reducing risk to ecosystems and their services, social assets and

Fig. 7. Spatial and temporal change in snag hazard for the 2003 B&B Complex. The first panel depicts fire severity while the remaining depict snag hazard at
increasing time since fire. The decadal period of highest hazard was between 10 and 20- years, although significant hazard persists through 30 years following high-
severity fire.
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property, and fire responders will help transition to a new fire man-
agement paradigm that produces desirable long-term outcomes in fire-
prone landscapes.

4.2. Future needs

In this manuscript, we described a methodology for assessing and
mapping snag hazards in post-fire environments, and in so doing, dis-
covered new perspectives on the implications of contemporary wildfire
effects. However, our research goals are to provide decision support
tools that improve the safety and effectiveness of wildfire management.
Doing so requires additional research investment and expansion of our
methodologies across a broader geographic scale. First, we need to
expand our mortality model to include additional species across a
variety of ecoregions. The Forest Inventory and Analysis (FIA) pro-
gram’s field plots likely meets this need. Second, we need to add to the
growing body of literature on post-fire snag dynamics (Grayson et al.,
2019) to stratify across additional tree species, topographic positions,
and post-fire stand characteristics. These factors contribute to highly
variable snag dynamics not well documented (Dunn and Bailey, 2016),
and are particularly important for aligning post-fire land management
decisions with fire response in the future. Third, our model requires pre-
fire tree lists that include species, DBH and height. Riley et al. (2016)
have imputed tree lists from FIA field plots across the western U.S.,
although they used a different methodology than GNN. Lastly, we need
to ensure that our hazard rating system is both quantitatively accurate
and representative of how snag hazards influence strategic and tactical
decisions. We are currently in the process of surveying fire responders
across a broad gradient of incident qualifications to refine our hazard
rating system.

We also recognize the need to integrate additional hazards into a
single responder exposure index that is actionable for fire responders
and informative for land management decisions. Extending our meth-
odology to other forest disturbances (e.g., drought and insects) would
contribute to a more comprehensive assessment of responder exposure
to snag hazard (Meddens et al., 2012; McDowell et al., 2015). In ad-
dition, snags become logs and heavy accumulation of coarse wood
elevates resistance to control by impeding travel, reducing line

construction rates, and increasing the difficulty of extinguishing a fire
(Page et al., 2013). Lastly, obtaining estimates of reburn impacts on
snag demographics would help clarify how alternative response stra-
tegies mitigate or exacerbate snag hazard in post-fire environments, so
that land and fire management decisions most effectively support long-
term risk reduction to fire responders. Expanding research to include
these factors requires investment, but minimizing risk of injury or death
to fire responders is prudent for an organization focused on enterprise
risk management, especially as the fire environment becomes increas-
ingly complex.
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