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Abstract: In wildland–urban interface areas, firefighters balance wildfire suppression and structure
protection. These tasks are often performed under resource limitations, especially when many
structures are at risk. To address this problem, wildland firefighters employ a process called “structure
triage” to prioritize structure protection based on perceived defensibility. Using a dataset containing
triage assessments of thousands of structures within the Western US, we developed a machine
learning model that can improve the understanding of factors contributing to assessed structure
defensibility. Our random forest models utilized variables collected by wildland firefighters, including
structural characteristics and the surrounding ignition zone. The models also used landscape variables
not contained within the triage dataset that captured important information about accessibility,
vegetation, topography, and structure density. We achieved a high overall accuracy (77.8%) in
classifying structures as defensible or non-defensible. The presence of a safety zone was the most
important factor in determining structure defensibility. Road proximity, vegetation composition, and
topography were also found to have high importance. In addition to improving the understanding
of factors considered by wildland firefighters, communities could also gain from this information
by enhancing their wildfire response plans, focusing on targeted mitigation, and improving their
overall preparedness.

Keywords: structure triage; structure defensibility; safety zone; wildland urban interface (WUI);
machine learning; firefighter decision-making

1. Introduction

Wildland fires can threaten communities, potentially causing widespread property
destruction and loss of life [1]. Historical land management practices and anthropogenic
climate change have increased fire activity in the Western US [2–4], where the development
of homes and infrastructure in the wildland–urban interface (WUI) has further elevated
wildfire risk to people [5,6]. The WUI is highly prone to wildland fires and presents
considerable risks to human lives and property [7,8]. Approximately 69% of structures
destroyed by wildfires in the conterminous US are located in WUI areas [6]. Moreover, the
WUI is among the fastest-growing land-use types in the US, witnessing a 41% increase in
new homes built between 1990 and 2010 [7].

Due to persistently high fire danger and continued development in WUI areas, pro-
tecting structures from wildland fires in the WUI remains extremely challenging [9,10].
Firefighters not only have to try to suppress the fire but also protect structures. The sit-
uation becomes even more daunting when faced with resource limitations, particularly
on incidents where a significant number of structures are at risk [11]. Structure protection
also presents challenges to wildland firefighter safety. Wildfires in the WUI give rise to ex-
ceptionally hazardous and volatile conditions, demanding quick, critical decision-making
from firefighters and other emergency responders.

Fire 2023, 6, 474. https://doi.org/10.3390/fire6120474 https://www.mdpi.com/journal/fire

https://doi.org/10.3390/fire6120474
https://doi.org/10.3390/fire6120474
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fire
https://www.mdpi.com
https://orcid.org/0000-0002-0241-1917
https://orcid.org/0000-0002-4449-9275
https://doi.org/10.3390/fire6120474
https://www.mdpi.com/journal/fire
https://www.mdpi.com/article/10.3390/fire6120474?type=check_update&version=2


Fire 2023, 6, 474 2 of 19

To address these challenges, wildland firefighters in the US employ a systematic ap-
proach known as “structure triage”, where trained personnel assess structures during major
wildland fire incidents. This process uses a standardized method of rapidly identifying,
prioritizing, and categorizing structures according to their defensibility, following specific
guidelines encompassing firefighter safety, fire behavior, structure characteristics, tactical
challenges and hazards, and structure protection strategies [12]. In the context of wild-
land fire management, defensibility refers to whether or not a structure can safely and
successfully be defended against damage or loss due to fire.

For structure triage, firefighters conduct on-the-ground visual assessments of each
structure. They determine whether sufficient escape routes and safety zones exist where
a threatened firefighter can find adequate refuge from dangerous fire conditions [13–15].
Next, they visually inspect the Home Ignition Zone (HIZ), a combination of the structure’s
building materials/design (i.e., roofing and siding, vents, decks, windows, and eaves),
as well as the structure’s immediate surroundings within 100 feet (i.e., available fuels,
vegetation management, and topography) [3], and determine any necessary defense mea-
sures. Structures are more likely to be deemed defensible if they have a low risk of ignition,
such as those built with fire-resistant materials or having adequate spacing from nearby
vegetation. Typically, these structures are prioritized for defense over structures with a
higher probability of ignition because they can be protected using fewer resources and less
time. The assessments are entered into an electronic form provided by the National Intera-
gency Fire Center (NIFC). This information serves as a valuable resource for fire incident
management and operation personnel, enabling decision-makers to effectively allocate
resources, prioritize structure protection efforts, and coordinate actions with personnel
involved in fire operations.

Past research has shown that factors like building materials, design, topography, the
surrounding vegetation and defensible space, greatly impact a structure’s survival [9,16–24].
Recent studies examining features at both the landscape scale (covering a large spatial
extent) and local scale (focused on areas close to the point of interest) indicated that land-
scape scale vegetation is a more reliable indicator of structure loss than local scale [25,26].
Structure density may also contribute to survivability. Past work has demonstrated a higher
risk of loss in areas with higher structure densities, suggesting that close proximity and
structure-to-structure ignition play a significant role [1,17,27–29]. Conversely, other studies
propose a greater risk of loss in lower-density areas due to their proximity to wildland
vegetation [22,23,25,30]. Accessibility may affect a structure’s survival and wildland fire-
fighter safety. Narrow or dead-end roads increase risks for firefighters by limiting escape
routes and impeding firefighting efforts [31,32]. In contrast, a wider, well-connected road
system could improve fire engine access and decrease the risk of structure loss. Syphard
et al. [30] found that isolated housing clusters with limited road access were more prone to
structure loss.

Despite extensive research on factors contributing to structure loss, the strategies that
firefighters employ to assess structure defensibility and the factors that may influence their
decision-making remain unexplored. This research aims to develop predictive models that
improve the understanding of firefighter structure triage during wildfires. By leveraging a
large, rich structure triage dataset, augmented with a host of GIS-derived landscape charac-
teristics, and a random forests machine learning algorithm, we seek to better understand
the driving forces behind firefighters’ interpretations of defensibility.

2. Materials and Methods
2.1. Structure Triage Dataset

The structure triage dataset used in this study was provided by NIFC [33]. This
dataset became operational during the 2020 fire season, and remains a working dataset
to which new data are being collected, updated, and accumulated on active incidents
where structures are threatened by wildland fire. We used structure assessments collected
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over a period spanning 20 June 2020 through 8 October 2021 in our analysis [33]. To our
knowledge, this is the first published analysis of the structure triage dataset.

Our study area consisted of 11 western states of the contiguous US: Arizona, Califor-
nia, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and
Wyoming (Figure 1). Although the structure triage dataset has national coverage, 96%
of all the records fall within these western states. Using the few records in the eastern
US and Alaska could bias or weaken a model aimed at predicting structure defensibility
due to large geographical distances, different wildland fire practices, and fire regimes.
Therefore, the structure triage data points outside the 11 Western US states were excluded
from the analysis.
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Figure 1. Study area map displaying the structure triage data points utilized for analysis, as well as
those that were excluded. Base map credit: Esri.

Structure triage category is the variable that encompasses the four categories of struc-
ture defensibility determined by wildland firefighters, and was used as the target or
response variable in this analysis. These four categories were as follows: (1) Defensible–
Stand-Alone (D-SA); (2) Defensible–Prep and Hold (D-PH); (3) Non-Defensible–Prep and
Leave (ND-PL); and (4) Non-Defensible Rescue Drive-By (ND-RDB) (Figure 2). D-SA
structures need no work to improve defensibility and are likely to stand independently
against the fire. Structures deemed D-PH are considered defensible, with little wildland
firefighter intervention. They are safe enough for crews to stay and implement structure
protection tactics as flames approach. ND-PL structures are not likely to survive a fire
without any mitigation measures. Since these structures are unsafe for crews, they will
perform mitigation measures as time allows and will pull back as the flames near, returning
after the main fire front passes to implement structure protection tactics. ND-RDB are those
considered too unsafe for firefighters to work on, and no amount of mitigation measures
can be taken to ensure a structure’s survival [12].
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presents several concerns, including the presence of overhanging trees, its positioning on a slope, 
and the use of wood siding, all of which increase the risk of ignition. 
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Figure 2. Structure triage categories defined by wildland firefighters during structure triage assess-
ment. Images were obtained from the structure triage dataset [33]. (a) A D-SA structure, with vinyl
siding and minimal vegetation in close proximity, which exhibits a very low probability of ignition.
(b) A D-PH structure that has adequate defensible space and accessibility but is located on a slope,
which may necessitate additional protection tactics. (c) An ND-PL structure which is a log cabin with
firewood stacked against the structure, resulting in a substantial risk of ignition. However, it benefits
from having minimal vegetation in its immediate vicinity. (d) An ND-RDB structure that presents
several concerns, including the presence of overhanging trees, its positioning on a slope, and the use
of wood siding, all of which increase the risk of ignition.

2.2. Analysis Variables

Analysis variables were selected based on variables included in the structure triage
dataset, plus additional GIS-derived variables describing vegetation, topography, structure
density, and road characteristics. Previous work has demonstrated relationships between
similar GIS-derived variables and structure loss [16,17,25,26,30]. The structure triage dataset
includes several variables related to structure defensibility that were used in modeling
(Figure 3). Structure Type refers to whether the structure was residential, outbuilding, or
commercial-type. Access describes what type of wildland fire resource could safely enter
a property and efficiently protect a structure (i.e., type 1 engine, type 3 or 4 engine, type
6 engine, handcrew, or other). Water Supply may or may not be present or reliable in a
wildland fire situation; this variable states what type of water access was near a structure,
whether fire hydrant(s), sprinkler system, or no reliable water source nearby. A Safety
Zone variable indicates whether firefighters determined there was an adequate safety zone
within a given area or if a safety zone was absent. A safety zone is a location where a
threatened firefighter can find adequate refuge from an approaching fire [13]. Defensible
Space was categorized based on the distance of modified vegetation and fuels from a
structure, including categories of no defensible space, 30 feet (9.1 m), greater than 30 feet, or
greater than 100 feet (30.5 m) of defensible space. Fuel Type indicates the dominant type of
vegetation, describing grass, shrub, or timber present adjacent to a structure. Roof Materials
and Siding Materials were categorized by different material types (i.e., wood, rock, concrete,
metal, wood, or fire-resistant materials) and their degree of combustibility. Electricity to a
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Structure and Gas to a Structure were noted because they can pose a dangerous hazard to a
firefighter. Primary Structures specify the number of dwellings where people predominantly
live on the property. Outbuildings indicate the number of structures surrounding the
primary structure(s) that are not inhabited. Incident command is the on-scene incident
command and/or management organization where command, control, and coordination of
an emergency response is located. Communication with Incident Command indicated whether
a secure line of communication can be established and maintained from the structure
location. Whether or not a building is occupied provides information to firefighters to
gauge life safety risks. Mitigation Hours is an estimated time that defensive measures will
be require to lower the probability of the structure igniting. Finally, the structure triage
dataset includes Latitude and Longitude indicating the location of each structure.
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Although the structure triage data contained an array of useful information, we sought
to determine if additional GIS-derived variables could augment the model dataset and
provide additional predictive or explanatory capacity. To that end, we incorporated addi-
tional variables derived from publicly available geospatial datasets, including vegetation
information, topography, structure density, and accessibility (Figure 3). This broadened the
scope of our analysis and offered a more comprehensive view of other factors potentially
influencing structure assessments not included in the triage data. Vegetation data offer
insights into fuel characteristics, including fuel type and density, which directly impact the
spread and intensity of wildfires. Topography, which also plays a critical role in dictating
fire behavior, sheds light on terrain effects on defensibility. Structure density helps identify
where higher or lower density may affect the assessment of defensibility. Accessibility
variables provide insight into efficient road access to structures. For all of these additional
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variables, each structure triage data point was evaluated using summary statistics derived
from varying radii (30 m, 60 m, 90 m, 360 m, 600 m, 900 m, 3.6 km, and 6 km) surrounding
the structure, allowing us to capture both local scale (i.e., the HIZ), and broader landscape
scale perspectives.

For the vegetation variables, we used data from LANDFIRE. The US LANDFIRE
program provides geospatial products, including vegetation, wildland fuels, and fire
regimes, at a national scale with a 30 m resolution raster format [34]. We employed
LANDFIRE’s Existing Vegetation Layers, which encompass existing vegetation type (EVT),
existing vegetation height (EVH), and existing vegetation cover (EVC) [35]. EVT is a product for
which each raster pixel represents the dominant plant community type. For our analysis,
variables that describe the vegetation physiognomy were included, such as vegetation
lifeform (EVT LF), vegetation physiognomy (EVT PHYS), vegetation physiognomic order
(EVT ORDER), and vegetation physiognomic class (EVT CLASS). Using a majority focal
statistic operation, the most common vegetation types across all pixels within circular areas
surrounding each structure were extracted at a range of radii (30 m, 60 m, 90 m, 360 m,
600 m, 900 m, 3.6 km, and 6 km) (Figure 3).

EVH is a product for which each pixel represents the average height of the dominant
plant lifeform (i.e., trees, shrubs, or herbaceous). Due to height dependence on lifeform, the
original categorical height classification scheme of EVH was replaced with a continuous
representation, where the distinction between plant lifeforms was removed. With this
change, each pixel solely represented the estimated height of vegetation in meters, pro-
viding a unified measure of vegetation height across the entire dataset. A mean statistical
operation was used to extract the average vegetation height value of pixels within each
radius (30 m, 60 m, 90 m, 360 m, 600 m, 900 m, 3.6 km, and 6 km) (Figure 3).

EVC originally represented the percent canopy cover of dominant plant lifeforms
(trees, shrubs, or herbaceous) per pixel. To streamline our analysis and account for how
each lifeform contributes as fuel for wildland fires, we transformed EVC’s categorical
cover classification into three continuous representations, each corresponding to a specific
lifeform’s cover as a percentage. In this representation, each pixel represents the dominant
lifeform’s cover percentage, while pixels not specific to that lifeform were assigned “NA”
(not applicable) values. As all three lifeforms are less likely to be in proximity to structures,
leading to missing values when extracting data especially at smaller radii, we concentrated
on extracting the mean cover for all three plant lifeforms from radii of 600 m, 900 m, 3.6 km,
and 6 km (Figure 3).

We also utilized the LANDFIRE 2020 Slope Degree product, which indicates the
steepness of surface inclines in degrees, ranging from 0 to 90 per pixel [36]. The mean
statistical operation was employed to extract the average slope value from pixels within
radii of 30 m, 60 m, 90 m, 360 m, 600 m, 900 m, 3.6 km, and 6 km (Figure 3).

Structure density was calculated from Microsoft’s deep learning-generated building
footprints dataset, which provides polygons for each structure across the entire US [37].
We transformed these polygons into points and then created multiple density rasters, each
capturing the density of structures per square kilometer within 30 m, 60 m, 90 m, 360 m,
600 m, 900 m, 3.6 km, and 6 km radii (Figure 3). These rasters enabled us to extract density
values at each structure triage data point.

We also incorporated accessibility into our analysis using the United States Census
Bureau’s Topologically Integrated Geographic Encoding and Referencing system (TIGER)
dataset. This dataset contains detailed road type attributes and line features representing
streets and roads [38]. We derived multiple variables from this dataset, including road
density at varying radii, distance to major roads, the closest major road type to each
structure triage data point, and any road type nearest to a structure triage data point
(Figure 3).
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2.3. Spatial Partitioning

The structure triage dataset has an underlying issue of spatial autocorrelation [39] that
can be attributed to large numbers of structures in close proximity being assessed when
threatened by wildfire. Structures within a neighborhood or community may be more
likely to have similar structure triage attributes. Spatial autocorrelation issues arise when
validating machine learning models such as random forests [40]. In a random sample,
neighboring structures or many structures in the same neighborhood or community could
end up in both the test and training datasets (Figure 4a). This would violate the model
assumption that observations are independent of one another by having observations close
together with similar values in both sets, resulting in inflated model accuracy.
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Figure 4. Testing and training structure triage data points for a subset of the study area. (a) Typical
random forest modeling randomly splits observations into training and test datasets through random
sampling. This leads to structures from the same neighborhood or community being included in both
the testing and training datasets. (b) We used spatial partitioning where each observation is grouped
by the fire it was threatened by. Base map credit: Esri.

To reduce potential impacts of spatial autocorrelation, a method known as “spatial
partitioning” was employed [41]. Each structure triage data point was grouped according
to the specific wildfire it faced, using the fire’s assigned name as an identifier (Figure 4b).
Observations were linked to the corresponding fire based on the dates of data collec-
tion and active fire periods, along with visual comparisons of locations and proximity
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of past fire perimeters from the Wildland Fire Interagency Geospatial Services (WFIGS)
Group’s dataset, which consolidates certified interagency fire perimeters from 2020 to the
present [42]. If a fire name could not be associated with a structure triage data point, it was
excluded from the analysis.

The partition function [43] from the R package Groupdata2 version 2.0.2 was used
to divide the structure triage data points into testing (30%) and training (70%) datasets.
This function ensures a balanced distribution by grouping data points based on a specified
categorical variable, in this case fire name.

2.4. Modeling

Random forests is a machine learning method that constructs a collection of decision
trees by building each tree with a random subset of the training data, and the predictions
from these trees are aggregated to produce a final prediction [44]. This method was ideal
for this analysis for several reasons, including supporting both binary and multi-class
classification tasks, the capability to handle both categorical and continuous predictors,
being able to characterize non-linear and interactive relationships between predictor and
response variables, and providing robust measures of variable importance. We utilized
the random forest classification algorithm as implemented in the ranger package version
0.14.1 [45] in R version 4.2.0, [46]. To optimize the performance of each model, we leveraged
the tuneRanger package version 0.5 [47] for model tuning.

This framework enabled us to create and evaluate two classification models for wild-
land firefighter assessments of structure defensibility: (1) a two-class classification model
in which we reduced the four categories of structure triage (D-SA, D-PH, ND-PL, and
ND-RDB) to two categories, where D-SA and D-PH were collapsed into a defensible category
and ND-PL and ND-RDB were collapsed into a non-defensible category; and (2) a four-class
classification model with all four structure triage categories (Figure 5).
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The structure triage dataset contained 36,688 data points in the Western US with an
assigned structure triage category. Preliminary data cleaning involved the correction or
removal of misspelled or incorrectly labeled values, and removal of data points where
the assigned structure triage category was “unknown”. The resulting dataset contained
30,857 structure triage data points (Figure 5).

Since firefighters were not required to enter information into structure triage assess-
ment fields, 20,675 out of 30,857 observations had values missing from one or more fields
(Figure 6). For example, the lack of information about a structure could hinder the input
of a value. If a firefighter were unaware of gas or how electricity was being supplied to a
structure, they might skip that field. Time constraints might also have been a contributing
factor; if a fire was moving quickly toward a community, it could be challenging to assess
every structure fully.
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Regardless of the reasons for leaving variables unassessed, missing data presented
challenges as random forest models cannot be successfully constructed with data containing
missing values. However, these data points may still have valuable information contained
within their non-missing fields and excluding them may reduce the model’s predictive
capacity. In recognition of these issues, we developed a strategic approach to add partial
data back into our modeling procedure.

Structure triage data points with any missing values were removed from the ini-
tial modeling process, resulting in a “filtered dataset” with a total of 10,182 data points
(Figure 5). Following this, variable selection was performed on both the two-class and
four-class datasets using the variable selection using random forests (VSURF) R package
version 1.2.0 [48]. VSURF is a technique that uses random forests to assess the importance
of each variable in the context of building a predictive model and selecting a subset of
important variables from a dataset. The resulting subset of variables can then be used in
subsequent modeling and analysis to potentially improve model performance or reduce
dimensionality. Following variable selection, data points possessing values for all selected
variables were added back into modeling to maximize the number of data points available
for modeling (Figure 5). This added 5587 data points to the two-class classification model
and 5852 data points to the four-class classification model.

The two-class and four-class models were evaluated using overall accuracy, precision,
and recall. In addition to these metrics, ranger’s permutation variable importance measure
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was used to examine the variables with the greatest impact on predicting structure defensi-
bility. Permutation variable importance measures the decrease in a model’s performance
when the values for a single predictor variable are randomly shuffled. When permuted,
more important variables tend to negatively affect model performance, indicating that the
model relies more heavily upon those variables [44]. Partial dependence plots were created
using the pdp package version 0.8.1 [49] to gain a deeper understanding of the statistical
relationships between the important variables and wildland firefighters’ assessment of
structure defensibility.

3. Results
3.1. Two-Class Classification Model

The variables selected for the two-class classification model included safety zone,
mean percent cover of shrubs at a 6 km radius, road density at a 3.6 km radius, distance to
major road type, slope at a 6 km radius, structure density at a 6 km radius, road density
at a 6 km radius, access, mitigation hours, and defensible space. The model achieved an
overall accuracy of 77.8% (Table 1). The defensible category exhibited a recall of 79.4%,
accurately classifying 2000 observations while misclassifying only 520 as non-defensible.
The precision for the defensible category was 83.4%, signifying its capability to accurately
classify this category, with just 16.6% of predictions being incorrectly labeled as non-
defensible. Conversely, the non-defensible category had a slightly lower recall of 75.4%.
Out of the total observations, 1219 were correctly identified as non-defensible, with 398
being mistakenly classified as defensible. The non-defensible category demonstrated a
precision of 70.1% and a relatively higher percentage of predictions being incorrectly labeled
as defensible (30.0%). Overall, this model achieved high accuracy and demonstrated its
ability to effectively classify structures as defensible, although its performance was slightly
lower for non-defensible structures.

Table 1. Two-class classification model matrix with recall and precision accuracies. OA = overall accuracy.

Actual Category

Defensible Non-
Defensible

Row
Total Precision

Predicted
Category

Defensible 2000 398 2398 83.4%
Non-

defensible 520 1219 1739 70.1%

Column
Total 2520 1617 4137

Recall 79.4% 75.4% OA = 77.8%

Several variables emerged as important in predicting structure defensibility (Figure 7).
Foremost, the presence of a safety zone was the most influential, with a permutation
importance (indicating a change in model accuracy) of 16.1%. The mean percent cover of
shrubs at a 6 km radius changed the model’s performance by 7.5%. In terms of accessibility,
variables such as the road density at a 3.6 km radius (7.2%), the road density at a 6 km
radius (6.2%), and the distance to major roads (6.8%) were also found to be important.
The slope at a 6 km radius and the structure density within a 3.6 km radius had similar
permutation importance. Other contextual factors had lower permutation importance, with
the access, mitigation hours, and defensible space variables each changing the accuracy by
approximately 2–4%.

The partial dependence plots provide additional insights into the relationships be-
tween variables and defensibility (Figure 8). Structures with a potential safety zone were
much more likely to be classified as defensible, underscoring its importance in determining
structure defensibility (Figure 8a). Higher percentages of shrub cover at a 6 km radius were
associated with an increased likelihood of structures being classified as non-defensible
(Figure 8b). While the non-defensible category also had a higher probability at low shrub
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cover, the rug plot shows few data points with low shrub cover, indicating that this specific
relationship may not be reliable. The density of observations was higher between 25 and
50%, and Figure 8b reveals that the likelihood of non-defensible classification drastically
increased at around 35% shrub cover.

Fire 2023, 6, x FOR PEER REVIEW 11 of 20 
 

 

the access, mitigation hours, and defensible space variables each changing the accuracy 
by approximately 2–4%. 

 
Figure 7. Variable importance using the permutation measure for the two-class classification model. 
The x-axis is the decrease in the model’s accuracy when the values for the indicated single predictor 
variable were randomly shuffled in the random forest modeling process. 

The partial dependence plots provide additional insights into the relationships be-
tween variables and defensibility (Figure 8). Structures with a potential safety zone were 
much more likely to be classified as defensible, underscoring its importance in determin-
ing structure defensibility (Figure 8a). Higher percentages of shrub cover at a 6 km radius 
were associated with an increased likelihood of structures being classified as non-defen-
sible (Figure 8b). While the non-defensible category also had a higher probability at low 
shrub cover, the rug plot shows few data points with low shrub cover, indicating that this 
specific relationship may not be reliable. The density of observations was higher between 
25 and 50%, and Figure 8b reveals that the likelihood of non-defensible classification dras-
tically increased at around 35% shrub cover.  

As the distance of a structure from a major road increased, the chance of a structure 
being classified as defensible decreased (Figure 8d). Regarding the slope at 6 km, struc-
tures were more likely to be deemed defensible at lower slope degrees (Figure 8e). The 
plot for access indicates that structures capable of accommodating larger wildland fire-
fighting equipment with significant water-holding capacities were more likely to be classified 
as defensible (Figure 8h). This can be attributed to larger equipment and water storage en-
hancing firefighting effectiveness, thereby increasing the likelihood of structures being 
deemed defensible. 

There were noteworthy associations between mitigation hours, the presence of de-
fensible space, and the likelihood that structures would be classified as defensible or non-
defensible (Figure 8i, j). As the number of mitigation hours increased, structures were 
more likely to be classified as non-defensible. Structures labeled as having “No defensible 
space” were considerably more likely to be classified as non-defensible. In contrast, the 
road density at a 3.6 km and 6 km radius (Figures 8c, g), and the structure density at a 6 
km radius (Figure 8f) had relatively small impacts on the likelihood of structures being 
categorized as non-defensible or defensible, making it challenging to draw definitive con-
clusions for how these factors may impact the assessment of structure defensibility. 

Figure 7. Variable importance using the permutation measure for the two-class classification model.
The x-axis is the decrease in the model’s accuracy when the values for the indicated single predictor
variable were randomly shuffled in the random forest modeling process.

As the distance of a structure from a major road increased, the chance of a structure
being classified as defensible decreased (Figure 8d). Regarding the slope at 6 km, structures
were more likely to be deemed defensible at lower slope degrees (Figure 8e). The plot
for access indicates that structures capable of accommodating larger wildland firefighting
equipment with significant water-holding capacities were more likely to be classified as
defensible (Figure 8h). This can be attributed to larger equipment and water storage
enhancing firefighting effectiveness, thereby increasing the likelihood of structures being
deemed defensible.

There were noteworthy associations between mitigation hours, the presence of de-
fensible space, and the likelihood that structures would be classified as defensible or
non-defensible (Figure 8i,j). As the number of mitigation hours increased, structures were
more likely to be classified as non-defensible. Structures labeled as having “No defensible
space” were considerably more likely to be classified as non-defensible. In contrast, the road
density at a 3.6 km and 6 km radius (Figure 8c,g), and the structure density at a 6 km radius
(Figure 8f) had relatively small impacts on the likelihood of structures being categorized as
non-defensible or defensible, making it challenging to draw definitive conclusions for how
these factors may impact the assessment of structure defensibility.

3.2. Four-Class Classification Model

The selected variables for the four-class model included safety zone, mitigation hours,
longitude, latitude, mean percent cover of trees at a 6 km radius, structure density at a
3.6 km radius, mean percent cover of shrubs at a 6 km radius, and defensible space. The
model’s accuracy decreased relative to the two-class model from 77.8% to 62.4% (Table 2).
Some notable patterns emerged when evaluating the model’s performance in individual
structure triage categories. D-PH achieved a recall rate of 74.3% along with a precision rate
of 60.4%. This implies that the model often overpredicted D-PH, which is unsurprising
given its high prevalence in the dataset. This frequency of overpredicting indicates a
propensity for commission errors, where the model tends to overclassify instances of D-PH,
leading to a decrease in the precision.
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In contrast, ND-PL exhibited a reasonably balanced accuracy, with a recall accuracy
of 65.1% and a precision rate of 65.5%, indicating similar occurrences of omission and
commission errors. The remaining 35% of the classification challenge mainly arose from the
model’s tendency to overpredict D-PH, leading to an increased number of false positives
for D-PH, resulting in confusion between these two categories.

For the D-SA category, the situation was quite the opposite: D-SA is a rarity in the
dataset, and it was notably underpredicted, as reflected by the recall accuracy of 34% and
the precision rate of 61.3%. This phenomenon may be attributed to the behavior of random
forests, where there is a tendency to overemphasize abundant classes while downplaying
rare ones [50,51]. This phenomenon is closely linked to the bagging process, which involves
randomly selecting subsets of the training data to build individual decision trees. Given
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that only a fraction of the data is used for each tree, rare classes may have a limited presence
in these subsets. Consequently, this can result in a decreased influence of rare classes on
the individual decision trees, causing the overall model to struggle when faced with such
infrequent instances [50,51].

Table 2. Four-class classification model matrix with recall and precision accuracies. OA = overall
accuracy.

Actual Category
D-SA D-PH ND-PL ND-RDB Row Total Precision

Predicted
Category

D-SA 192 105 8 8 313 61.3%
D-PH 295 1266 481 54 2096 60.4%

ND-PL 80 332 911 67 1390 65.5%
ND-RDB 1 0 0 1 2 50.0%

Column Total 568 1703 1400 130 3801
Recall 33.8% 74.3% 65.1% 0.8% OA = 62.4%

In the case of the ND-RDB category, the model displayed a dismal recall accuracy of
0.8% and a low precision rate of 50%. It is crucial to recognize that the 50% precision should
be approached with caution. This is because the model made merely two predictions
pertaining to ND-RDB instances. When working with such a limited number of predictions,
the presence of one correct prediction does not offer a reliable performance measure.

Several variables appeared to be important when predicting structure defensibility using
all four structure triage categories (Figure 9). Notably, the presence of a safety zone emerged as
the most influential, leading to a 16.2% change in the model accuracy. Longitude and latitude
also caused substantial changes to the model’s performance by 14.1% and 11.7%, respectively,
indicating potential geographic differences in the assessment of structure triage classes. The
vegetation variables, specifically the mean percent tree and shrub cover within a 6 km radius,
influenced the model’s performance by 10.7% and 9.3%, respectively. Structure density within
a 3.6 km radius had a similar permutation importance. Lastly, the number of mitigation hours
had a 7.9% impact on model accuracy, while defensible space brought about a 4.3% change
in the model’s performance. While the importance was higher for many variables selected
for the four-class model, we note that the model itself was less capable of distinguishing
between classes in comparison to the two-class model. The partial dependence plots for the
four-class classification are shown in Appendix A, Figure A1, but should be interpreted with
caution given the relatively poor model performance and the less prevalent classes (D-SA and
ND-RDB) being poorly accounted for by the model.
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4. Discussion

In our two-class classification model, we achieved a high level of accuracy, coupled
with high recall and precision accuracies. However, the four-class model exhibited lower
prediction accuracy. This was primarily due to an imbalance in the dataset, where the
D-PH and ND-PL categories accounted for 81% of the training data. As a result, the
model struggled to classify the rarer D-SA and ND-RDB categories accurately. As the
precision of the classification scheme increased, transitioning from a two-class to a four-
class model, it is conceivable that individual-level assessments may exhibit a heightened
degree of ambiguity and subjectivity among different individual cases. In other words, as
the granularity of the classification system intensifies, the distinctions between categories
become more subtle, potentially resulting in varying and less clear-cut evaluations made by
different individuals. Focusing solely on distinguishing between two outcomes simplifies
and streamlines the decision-making process, eliminating some nuanced differences when
assessing a structure’s defensibility.

In addition to creating predictive models, this study also provided insights into how
firefighters may weigh different variables during their evaluation of structure defensibility.
The importance of proximal safety zone presence in both models emphasizes the high
importance firefighters likely place on maintaining their own safety and how this consid-
eration affects their determination of structure defensibility. It is worth noting that the
presence of a safety zone is dependent on many factors, including environmental condi-
tions, wildfire behavior, and individual judgment. Recent efforts to employ geospatial
techniques for mapping and providing quantitative descriptions of safety zones offer one
avenue for making safety zone assessments less subjective [15,52,53].

The presence of nearby major roads also appears to be an important determinant
of structure defensibility. Roads provide convenient, rapid access for firefighters and
emergency response teams. This accessibility can enable faster response times and facilitate
the efficient transportation of firefighting equipment. Recognizing the importance of these
road networks in enhancing defensibility can inform better urban planning and emergency
preparedness strategies, contributing to safer and more resilient communities.

Variables related to vegetation, such as the average percentage of shrub cover, were
also found to be important in the two-class and four-class classification models. Vegetation
is the primary means by which wildfire propagates. High fuel loads can significantly
increase the danger posed to structures by increasing the intensity and spread of wildland
fire [3]. Both the two- and four-class classification models included shrub cover at a 6 km
radius as a variable, while the four-class model also included tree cover at a 6 km radius.
The two-class classification model indicated that elevated shrub cover at a landscape scale
heightens the likelihood of structures being classified as non-defensible. Interestingly, a
notable sharp increase in non-defensibility was observed at around 35% cover. Our findings
emphasize the importance of landscape scale vegetation, which aligns with previous
research conducted by Syphard et al. [26] and Braziunas et al. [25], supporting the notion
that landscape scale vegetation may serve as a better predictor of structure loss compared
to local scale vegetation.

The mean slope within a 6 km radius was selected as a variable in the two-class
model. The partial dependence plot in Figure 8e shows that structures in areas with shallow
slopes were more likely to be categorized as defensible. This finding is consistent with
prior research indicating that structures on steeper slopes are more susceptible to loss or
destruction during wildfires [16,17,30]. However, variables capturing slope at finer scales
were not selected, indicating that landscape scale slope may have similar value as landscape
scale vegetation cover for explaining structure defensibility.

Although this study provides valuable insights into the complex relationships be-
tween variables and firefighter assessments of structure defensibility, it is important to
acknowledge certain limitations in the research methodology. One notable limitation is
the reliance on subjective assessments by individual firefighters during the data collection
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process. Determining structure defensibility is inherently subjective and can vary based on
each firefighter’s experience, training, and personal judgment.

Examining Figure 6 reveals a consistent pattern in the completion of variables, with
structure type, roof material, siding material, defensible space, and access being the most
reliably filled out. These variables, arguably less subjective and easier to observe and
document, stand out in their consistency. In contrast, variables such as electricity to
structure, primary structure, water supply, gas to structure, safety zone, building occupancy,
and mitigation hours are more difficult to ascertain. These variables tend to be more
subjective or are not as easily observable, which could contribute to the more frequent
omission of these variables in the dataset, reflecting the inherent complexity involved in
their assessment. In the modeling process, a notable distinction arose between the structure
triage variables and the GIS-derived variables. With the exception of the very important
safety zone variable, the structure triage variables were generally found to be less important
than the GIS-derived variables. Many of the structure triage variables required subjective
judgment, and external factors or inconsistencies in the assessment process might have
influenced their values.

Firefighters’ decision-making in structure triage may show confirmation bias, where
they unconsciously prioritize information aligning with their beliefs, downplaying contra-
dictory data. This cognitive process can lead to firefighters giving greater importance to
specific variables, potentially at the expense of others, to validate their initial assessments.
The adoption of a balanced evaluation approach in structure triage could prove beneficial,
and further research in this field may provide valuable practical insights.

Other limitations include the lack of specific information about fire behavior, weather
conditions, time constraints, and other factors associated with each fire incident. This
information could improve the understanding of the context in which the assessments of
defensibility were made. For instance, a structure may have been considered defensible
during a period with lower wind speeds, but non-defensible during a period with antici-
pated higher wind speeds. Despite these limitations, our predictive capabilities maintained
a high level of accuracy. However, considering these factors could provide additional
insights into the effectiveness of a variety of strategies and tactics used to protect structures
and further enhance predictive accuracy.

Our findings have practical implications for fire management practices. One potential
application is enhancing structure triage training for fire personnel. Incorporating the
study’s findings on which variables are most closely associated with structure defensibility
can provide valuable guidance for assessing risks to structures during wildfires, and may
be useful for creating heuristics that increase the efficiency in assessing defensibility. Our
findings also have implications for communities. By collaborating with fire management
professionals, communities can develop comprehensive wildfire response plans and im-
plement measures to mitigate fire risks to improve the likelihood of structures in that
community being categorized as defensible. For example, ensuring that safety zones are
available close to structures in a community would seem to be critical for increasing the
likelihood of structures being assessed as defensible. Additionally, maintaining and clear-
ing access roads leading to properties within a community may improve their perceived
defensibility. These actions can be combined with commonly advocated maintenance of
defensible space around structures [9,22,25]. By leveraging these findings, communities can
develop informed strategies and implement measures that enhance the likelihood of struc-
tures being categorized as defensible, thereby optimizing risk mitigation and contributing
to overall wildfire resilience within the WUI.

Future research holds considerable potential to advance structure triage practices by
applying spatial analysis and modeling techniques. By incorporating GIS, remote sensing,
and machine learning, researchers could develop models that enhance the accuracy and
effectiveness of identifying structures’ defensibility. For example, by harnessing these
advanced technologies, researchers could create spatial models that incorporate additional
variables and factors, such as structure location, vegetation information, long-term simu-
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lations of wildfire behavior, fuel models, and fire weather. By integrating these data and
modeling techniques, researchers have the potential to develop a comprehensive national
scale map that offers more accurate and detailed assessments of structures’ predicted de-
fensibility levels. This type of map could provide a valuable tool to enable decision-makers,
emergency responders, and land managers to visualize and assess the vulnerability of
structures in communities.

Similarly, examining the correlation between structure triage ratings obtained during
an incident and the subsequent structure loss in wildfires offers a promising direction for
future research. The empirical validation process could compare structure triage ratings,
on-the-ground protection measures implemented by firefighters, and the survival or loss of
structures. This type of analysis could serve to provide an improved understanding of the
accuracy and value of structure defensibility assessments in the dynamic context of actual
wildfire events.

5. Conclusions

The main focus of this research was to advance our understanding of structure triage
and defensibility by developing robust predictive models that provide insight into the
factors that may be considered by firefighters during structure triage assessment. This
study was the first to utilize a structure triage dataset maintained by NIFC in a predictive
modeling context, and demonstrates the effectiveness of classifying structures as either
defensible or non-defensible based on the considered variables and criteria. This study
also highlights the challenges of making more precise predictions that further distinguish
between defensible and non-defensible classes in a four-class classification model. Our
models highlighted the extreme importance of safety zones for the assessment of structure
defensibility, where the absence thereof may play a strong role in a firefighter deeming a
structure non-defensible. GIS-derived landscape scale vegetation and road variables, which
were not included in the structure triage dataset, but are believed to be important predictors
of defensibility, were also consistently found to be important across both the two and four-
class models. These findings will contribute to improving the consistency and reliability of
the structure triage process. They also provide unprecedented insights into the importance
of firefighter safety in making fire management decisions. Lastly, the findings are useful
more broadly to anyone who may live in fire-prone WUI settings, as they provide direct
evidence towards the structural and landscape conditions that may influence firefighters’
determinations of whether or not a structure can be safely and effectively defended.
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