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Abstract: The increasing frequency of wildfires has posed significant challenges to communities
worldwide. The effectiveness of all aspects of disaster management depends on a credible estimation
of the prevailing risk. Risk, the product of a hazard’s likelihood and its potential consequences,
encompasses the probability of hazard occurrence, the exposure of assets to these hazards, existing
vulnerabilities that amplify the consequences, and the capacity to manage, mitigate, and recover from
their consequences. This paper employs the multiple criteria decision-making (MCDM) framework,
which produces reliable results and allows for the customization of the relative importance of factors
based on expert opinions. Utilizing the AROMAN algorithm, the study ranks counties in the state of
Arizona according to their wildfire risk, drawing upon 25 factors categorized into expected annual
loss, community resilience, and social vulnerability. A sensitivity analysis demonstrates the stability
of the results when model parameters are altered, reinforcing the robustness of this approach in
disaster risk assessment. While the paper primarily focuses on enhancing the safety of human
communities in the context of wildfires, it highlights the versatility of the methodology, which can be
applied to other natural hazards and accommodate more subjective risk and safety assessments.

Keywords: wildfire; safety; community risk assessment; hazard; multiple criteria decision making
(MCDM); alternative ranking order method accounting for two-step normalization (AROMAN)

1. Introduction

The Wildland-Urban Interface (WUI), defined as the transitional zone between unoc-
cupied wildland and human development, emerges as the primary hotspot for escalating
wildfire threats. In the year 2022 alone, the United States witnessed nearly 69,000 wildfires,
which consumed 7.5 million acres, roughly equivalent to 30,000 square kilometers [1]. A
substantial portion of the contiguous United States, ranging from 5.6% to 18.8%, falls under
the WUI classification [2], rendering over 46 million homes in approximately 700,000 com-
munities susceptible to wildfire risks [3]. A larger population residing in WUI communities
amplifies wildfire risk in two ways: it exposes more people to the potential for wildfires
and increases the likelihood of human-caused fires. It is worth noting that in 2022, over
89% of the wildfires in the United States were caused by human activities [1].

Estimating natural hazards risk proves to be an invaluable tool across all phases of
disaster management, encompassing policy-making, prevention and mitigation, planning
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and preparedness, response, and recovery [4]. In essence, risk is defined as the product
of the likelihood of hazard occurrence and its potential consequences [5]. However, con-
ducting a comprehensive risk assessment for natural hazards is challenging, as none of
the aforementioned risk components are easy to evaluate. Such assessments typically
require the thorough integration of various factors and a deep understanding of their
intricate relationships.

For example, in the case of wildfires, the likelihood of occurrence depends on several
parameters, including but not limited to land cover and land use, vegetation characteristics,
weather conditions, precipitation, and topography [6]. Furthermore, modeling wildfire
dynamics [7], spread patterns [8], intensity, and flame length [9] introduce a layer of
complexity when estimating the exposure of WUI communities to fire. On the other
hand, population distribution and demographic profiles [10], infrastructure extent and
quality [11], and the extent of existing mitigation projects [12] all play pivotal roles in
assessing potential consequences. Therefore, there is no single approach to wildfire risk
assessment; it is highly subjective and relies on expert judgment and the perspective of risk
evaluators. In the literature, researchers have proposed diverse wildfire risk evaluations by
addressing the following questions differently [5]:

What highly valued resources and assets are considered (e.g., people, forests, protected
areas, infrastructure, agricultural lands, wildlife ecosystem)? What are risk’s most critical
driving factors, and how do their relative importance vary? How should the selected
factors be combined to yield a reasonable risk assessment?

As a result, in quantitative risk assessment, the relative risk scores and rankings, rather
than the absolute value of risk, provide more meaningful insights for disaster planning,
budget allocation, and prioritization. This paper addresses the existing gap in employing
a systematic MCDM approach to rank various communities based on their wildfire risk.
The primary outcome of this research is the development of a structured approach, firmly
grounded in MCDM literature, that empowers well-informed, risk-based decision-making
processes before, during, and after wildfire incidents. This approach equips stakeholders
with the tools they need to proactively plan for, respond to, and recover from wildfires.

The primary objective of this paper is to introduce a wildfire risk scoring methodology
focused on enhancing community safety. In pursuit of this goal, this methodology centers
its attention on communities, specifically targeting the assessment of the risk for buildings,
agriculture, and the population, collectively identified as Highly Valued Resources and
Assets (HVRAs). While acknowledging the importance of natural resources, wildlife, and
landscapes, this evaluation excludes these assets from consideration in assessing potential
consequences. Taking inspiration from the National Risk Index (NRI) introduced by the U.S.
Federal Emergency Management Agency (FEMA) [13], which integrates factors derived
from extensive expert judgments across various entities and federal agencies, this paper
adopts the same set of factors for wildfire risk scoring. These factors encompass the FEMA’s
Expected Annual Loss (EAL) for buildings, agriculture, and population [13], the U.S.
Centers for Disease Control and Prevention (CDC) Social Vulnerability Index (SVI) [14,15],
and the University of South Carolina’s Baseline Resilience Indicators for Communities
(BRIC) [16]. This alignment with NRI-established criteria ensures a comprehensive and
expert-informed approach to wildfire risk assessment within the context of community
safety. The proposed methodology is used to compute the risk score and ranking for all
counties in the state of Arizona.

Utilizing MCDM methodologies in the context of natural hazard risk scoring offers a
robust foundation for effective disaster management and informed policy-making. MCDM
plays a crucial role in simplifying the complex task of handling conflicting objectives
within risk scoring. For instance, factors related to social vulnerability and community
resilience often exert opposing influences on risk. MCDM provides a structured frame-
work for identifying a reasonable balance between these conflicting criteria. Furthermore,
MCDM introduces a systematic approach for incorporating subjective preferences and
expert judgments into scoring, leading to more context-sensitive risk assessments. The
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same community may exhibit different risk scores in distinct contexts (e.g., evacuation, re-
covery, etc.), highlighting the flexibility and adaptability of MCDM in tailoring risk scoring
to specific conditions and needs.

The MCDM methodology applied to the concept mentioned above is the alternative
ranking order method accounting for two-step normalization (AROMAN), that is devel-
oped by Bošković et al. [17] and further extended by Bošković et al. [18]. The method
combines linear and vector normalization techniques and creates a precise data structure
for further calculation steps to obtain trustable ranking alternatives. In addition to its
application, sensitivity analyses are performed, and the results prove high stability.

Considering the fact that the AROMAN method is relatively new, so far it has been
applied in solving several types of problems: Intuitionistic fuzzy model for EcoPorts
performance evaluation [19], interval type 2 decision-making method Fuzzy AROMAN
for improving the sustainability of the postal network in rural areas [20], decision-making
model for the selection of professional drivers [21], evaluation of sustainable human
resource management in manufacturing firms [22].

The rest of the paper is organized as follows: Section 1 is the introduction. Section 2 is
the literature review in the field. Section 3 is a mathematical description of the AROMAN
methodology. Section 4 reveals the results and its discussion. Section 5 concludes and gives
future research directions for the manuscript.

2. Literature Review

In this section, we performed an extensive literature survey to collect the previous
studies on wildfire risk assessment. The authors’ primary purpose is to identify these
papers’ contributions and managerial implications aside from the research gaps these
works have not filled. Hence, we collected forest fire risk estimation and mitigation studies
using MCDM approaches.

For this purpose, well-known and popular scientific databases such as Web of Science,
Scopus, Mendeley, and Google Scholar were investigated using some keywords such as
forest fires risk assessment and analysis, wildfire risk assessment, and MCDM. In the first
investigation, using the wildfire risk assessment keyword, we found a total of 1210 papers.
However, most of these studies discuss risk assessment and mitigation methods with
the help of various qualitative techniques, and no mathematical model or methodological
framework proposal has been found in these studies. In conclusion, when keywords such as
multiple criteria decision making and MCDM were added to these keywords, thirty studies
were identified. However, in twenty of these studies, a decision-making or mathematical
model for evaluating forest fires has been proposed. Table 1 presents the relevant studies in
the literature and their details.

When the methodological frameworks preferred by the authors in the previous studies
to compute the criteria weights are evaluated, the analytic hierarchy process (AHP) is
the most used approach by the authors. This weighting technique was used 13 times in
22 methodological frameworks used in 20 related studies. Next, while ANP was used three
times, modified AHP, SAW, DEMATEL, and TOPSIS were applied once in the relevant
literature. In addition, when ranking procedures are used in the literature to estimate
forest fire risks, geographical information systems (GIS) is the most preferred technique.
It was used nine times in 20 studies (41%). While the AHP was employed four times,
PROMETHEE was preferred in only one study. Additionally, in six papers, there were
no mathematical tools to assess the preference ratings of the alternatives, as these works
investigated only the influential criteria affecting wildfire risk assessment. In addition, the
classical fuzzy set [23] was used in only five works to handle uncertainties influencing
the decision-making processes. In the remaining studies, subjective decision-making
techniques were preferred by the authors.
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Table 1. The previous works in the relevant literature and their details.

Approach The Number of The Most Important:

Author(s) Weighting Ranking Fuzzy Sets Country Criteria Options The Criteria Alternative

Dolui (2023) [24] AHP and DEMATEL - - India 14 - Forest fire susceptibility -
Thakur and Singh (2014) [25] AHP AHP - India 6 4 Existing road Area-3
Marques et al. (2017) [26] Multi-MCDM - - Spain 4 5 Fuel treatments Pine forests
Goleiji et al. (2017) [27] ANP - C.FS Iran 16 - Distance from tourism site -
Lamat et al. (2021) [28] AHP AHP - India 12 4 Population density Meghalaya
Ghorbanzadeh et al. (2019) [29] AHP GIS - Iran 16 5 Livestock and farms Mazandaran
Duodu et al. (2017) [30] GAIA PROMETHEE - Australia 9 15 Using benzo(a)pyrene Commercial field
Varela et al. (2005) [31] AHP AHP - Spain 7 5 Proximity to aircraft point Spread Index
Nuthammachot and Stratoulias (2021) [32] AHP GIS - Thailand 7 - Precipitation -
Sinha et al. (2023) [33] AHP AHP C.FS India 10 - Land Surface Temperature Kedarnath
Ghanbari Motlagh et al. (2022) [34] ANP GIS - Iran 11 - Distance from farmlands -
Abedi Gheshlaghi (2019) [35] ANP GIS - Iran 10 - Annual rainfall -
Abedi (2022) [36] SAW and TOPSIS - - Iran 29 Cooperation of institutions -
Eskandari (2017) [37] AHP GIS C.FS Iran 17 - Distance from road -
Pourghasemi et al. (2016) [38] M-AHP - - Iran 7 - Annual temperature -
Gigović et al. (2018) [39] AHP GIS - Bosnia 8 Distance from roads -
Güngöroğlu (2017) [40] AHP GIS C.FS Turkey 15 - Socioeconomic properties -
Suryabhagavan et al. (2016) [41] AHP - Ethiopia 5 - Vegetation type -
Vadrevu et al. (2010) [42] AHP GIS India 7 - forest fire protection -
Gonzalez-Olabarria et al. (2019) [43] AHP GIS - Spain 17 7 Patch proportion -

Our work AROMAN - USA 25 15 EALB Greenlee
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When the criteria influencing the wildfire risk assessment are evaluated, in almost all
papers, the most influential criterion is different. In three studies [25,37,39], risk degree
was associated with the criteria of distance to the road or existence of the road in the region.
Additionally, the distance to farms criterion is determined as the most critical factor in the
two studies.

2.1. Research Gaps

As understood from Table 1, most authors focusing on wildfire risk assessment with
the help of decision-making tools mainly employed the AHP method. The AHP method is
the most criticized approach in the literature due to its structural problems and disadvan-
tages [44]. It has a complicated and time-consuming basic algorithm, and computations
and comparisons become more challenging based on the number of criteria. Additionally,
it is not sufficiently resistant to the rank reversal problem [45,46], as adding or removing a
criterion can dramatically change the overall results. Hence, it may not provide satisfactory
and reliable outcomes for decision-makers. Further, it requires additional computations to
identify the consistency ratio.

Additionally, the number of papers dealing with wildfire risk assessment using MCDM
frameworks is incredibly scarce. Despite our team’s ceaseless effort, we could find only
twenty papers investigating this current subject in the literature. However, thousands
of studies are related to forest fires in the literature. Consequently, examination of this
issue with the aid of MCDM tools has considerably been neglected by the members of the
research society.

2.2. Objectives and Motivations of the Work

The current study’s main aim is to fill the research gaps. For this purpose, it proposes
a novel and has not been used to evaluate wildfire risk assessment problems in the relevant
literature. This approach, namely AROMAN, is an efficient and robust decision-making
procedure, and it can be applied to address many intricate decision-making problems. Fur-
ther, it does not require many comparisons and can achieve reliable and reasonable results.
Also, it can be employed to compute the criteria weights and identify the preference ratings
of the alternatives together. Hence, it does not need additional weighting approaches to
calculate the criteria weights.

Decision-makers in the field of forest protection can consider the proposed model as a
guideline to produce efficient solutions for mitigating fire risks. In addition, policy-makers
can create new regulations and procedures to improve the existing ecological system and
forest conditions to manage the existing natural assets of the societies.

3. Methodology

As elucidated in the Introduction, this paper employs three datasets for MCDM-based
wildfire risk assessment. Prior to delving into the methodology explanation, it is beneficial
to gain an overview of the factors utilized in this study. The 25 factors in this study are
categorized into 3 main groups.

The first three factors are derived from the National Risk Index and encompass the
annual expected loss (AEL) of buildings, agriculture, and populations. These factors
provide the potential consequences of a wildfire for a given community. It is noteworthy to
mention that all AEL values are provided in US dollars to facilitate comparability. It is also
necessary to emphasize that the process of estimating loss values for each asset type is a
topic beyond the scope of this paper, as it entails extensive expert judgment alongside a
comprehensive multidisciplinary evaluation of the losses. FEMA has leveraged the expert
judgment of professionals from various federal agencies in this process.

The next six factors are derived from the Baseline Resilience Indicators for Communi-
ties (BRIC) dataset. This dataset employs 49 variables, primarily sourced from open-source
federal government databases, which significantly impact community resilience. The
dataset generates six major factors encompassing social, economic, community capital, in-
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stitutional, infrastructural, and environmental dimensions. All of these factors are presented
at the county level for the entire United States. Each set of these six factors encompasses a
broad array of community attributes and features capable of mitigating the consequences
of hazards during emergency situations.

The final 16 factors are derived from the Social Vulnerability Index (SVI) dataset.
These factors elucidate community features that may amplify hazard consequences by
highlighting vulnerabilities in emergency preparedness, risk mitigation capacity, emergency
management, or disaster recovery. Encompassing a wide range of variables, these factors
cover different aspects of vulnerabilities against natural hazards including socioeconomic
status, household characteristics, racial and ethnic minority status, as well as housing type
and transportation.

This paper utilizes an alternative ranking order method accounting two-step normal-
ization (AROMAN). This method was originally developed by Bošković et al. [17]. The
method can be described through the six steps:

Step 1. Define the initial input data decision-making matrix.

Formulating the initial input data decision-making matrix is essential. The input
data regarding the alternatives and criteria are mostly collected in advance. In that sense,
let us suppose we have a decision matrix Xmxn with the input data x11,. . ., x2j, . . . , xmn,
Equation (1):

X =



x11 · · · x1j · · · x1n
...

. . .
...

. . .
...

x21 · · · x2j · · · x2n
...

. . .
...

. . .
...

xm1 · · · xmj · · · xmn

, i = 1, 2, . . . , m, j = 1, 2, . . . , n. (1)

Step 2. Normalize the input data.

The second step of the AROMAN method is to normalize the input data.
In other words, the input data should be restructured in intervals between 0 and 1. Two

types of normalization techniques are used and further combined Equations (2) and (3):
Step 2.1. Linear Normalization:

uij=
xij − min

i
xij

max
i

xij − min
i

xij
, i = 1, 2, . . . , m; j = 1, 2, . . . , n. (2)

Step 2.2. Vector Normalization:

u∗
ij =

xij√
∑m

i=1 x2
ij

; i = 1, 2, . . . , m, j = 1, 2, . . . , n. (3)

When it comes to normalization, the criteria type is not considered. The criteria are
treated equally.

Step 2.3. Aggregated averaged normalization.
The aggregated averaged normalization is calculated by utilizing Equation (4):

unorm
ij =

βuij + (1 − β)u∗
ij

2
; i = 1, 2, . . . , m; j = 1, 2, . . . , n. (4)

where unorm
ij denotes the aggregated averaged normalization. β is a weighting factor

varying from 0 to 1. In our case, we suggest β to be 0.5. According to Bošković et al. [17],
coupling two normalization techniques is more effective than using the only one.
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Step 3. Multiply the Aggregated Averaged Normalized decision-making matrix with the
criteria weights to obtain a weighted DM matrix.

In this step, it is necessary to obtain the normalized weighted decision-making matrix.
It can be calculated by applying Equation (5):

ûij = Wij·unorm
ij ; i = 1, 2, . . . , m; j = 1, 2, . . . , n. (5)

Step 4. Summarize the normalized weighted values of the criteria type min (Ki) and the
normalized weighted values of the max type (Oi).

In this step, we summarize the normalized weighted values of the criteria type min
and the normalized weighted values of the max type.

This can be calculated by applying Equations (6) and (7):

Ki ∑n
j=1 ûij

(min); i = 1, 2, . . . , m; j = 1, 2, . . . , n; (6)

Oi ∑n
j=1 ûij

(max); i = 1, 2, . . . , m; j = 1, 2, . . . , n. (7)

Step 5. Raise the obtained sum of Oi and Ki values to the degree of λ.

Kî = Ki
λ = (∑n

j=1 ûij
(min))

λ
; (8)

Oî =Oi
1−λ =

(
∑n

j=1 ûij
(max))1−λ . (9)

λ denotes the coefficient degree of the criterion type. In our case, λ is 0.5. However,
variations of the parameter λ when considering the criteria type are used in the sensitivity
analysis.

Step 6. Calculate the difference between the values Kî and Oî and finally, rank alternatives
(Ti) (Equation (10)).

Ti = e(Oî−Kî ) (10)

where: Ti denotes the final rank.
The steps of the AROMAN method are depicted in Figure 1.
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4. Results and Discussion

This section reveals the results obtained by the AROMAN method. The input data
matrix is formulated and presented in Table 2.
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The second step of the AROMAN method is to formulate a normalized input data
matrix. After two-step normalization techniques (linear and vector) and their combination,
the aggregated normalized matrix is obtained and presented in Table 3. β represents a
weighting factor ranging from 0 to 1 in the aggregated normalization. In the context of the
risk assessment, the input data were coupled into the aggregated structure, considering β
as 0.5. However, the decision-maker can make variations of the parameter β between the
intervals 0 to 1. In this paper, we utilized this variation in the sensitivity analysis.

By applying the Step 3, we calculate the weighted-aggregated normalized matrix. This
means that each value of the normalized matrix multiplies the criteria weight. This is
presented in Table 4.

The next step summarizes the normalized weighted values of the criteria type min
(Ki) and the normalized weighted values of the max type (Oi). In addition, the distinction
between the Oi and Ki values is calculated as well. Moreover, the final rank (Ti) is calculated,
and all of those values are presented in Table 5.

The AROMAN method, based on Figure 2, ranked Greenlee as the best, followed by
Coconino, etc.
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As the results clearly indicate, the proposed methodology excels more in risk scoring
rather than risk quantification. This implies that the MCDM-based risk assessment is
primarily employed to rank a set of communities based on their risk levels. This ranking
directly furnishes valuable information for decision-makers and policy-makers in various
managerial aspects, such as resource allocations and prioritization for preparedness and
risk mitigation programs.
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Table 2. Input Data Matrix.

County Ealb Ealpe Eala Social Econom Housing/
Infra

Comm
Capital

Institu-
tional

Environ-
ment

Po
v1

50

U
ne

m
p

H
bu

rd

N
oh

sd
p

U
ni

ns
ur

A
ge

65

A
ge

17

D
is

ab
l

Sn
gp

nt

Li
m

en
g

M
in

rt
y

M
un

it

M
ob

il
e

C
ro

w
d

N
ov

eh

G
ro

up
q

Apache 1,353,764 566.5 27.5 0.47688 0.4612 0.11834 0.35516 0.30438 0.50811 48.9 9.4 12.9 18.5 26.2 15.5 26.8 14.3 8.8 5.3 81.9 0.6 23.2 13.3 13.2 1.8
Cochise 6,222,416 1767.8 5140 0.61308 0.48521 0.23044 0.27134 0.31832 0.5 26.7 6.8 24.3 11.3 7.8 22.2 21.5 17.6 6.4 3.7 45.4 6 20.5 2.3 6 5.8
Coconino 20,221,568 6949.7 0.8 0.6376 0.48692 0.23947 0.32336 0.37141 0.51599 27.7 8.1 28.3 9 11.1 12.6 20.4 12.8 5.6 2.1 46.2 8.8 12.7 6.6 5.2 10.4

Gila 15,866,414 7763.8 547.5 0.57009 0.44726 0.19156 0.32246 0.35526 0.51596 30.6 6.3 22.6 12.7 10.1 28.9 19.8 21 4 1.2 38.1 0.9 20.4 3.9 6.6 1.9
Graham 1,414,235 532.5 952.7 0.60956 0.48089 0.22886 0.32612 0.32623 0.50246 28.8 6.9 21.2 14.7 7.4 13.9 26.8 13.9 7.1 1.8 49.1 2.4 22.6 5.4 5.6 9.4
Greenlee 185,917.6 1903.5 17 0.65 0.48001 0.21109 0.3211 0.33895 0.51338 20.1 2.8 10.2 14.8 3 12.8 27.3 12.2 7.9 1.8 53.9 1.2 25.3 5.4 2.3 1
La Paz 97,246.7 91.7 0.9 0.51716 0.40388 0.11577 0.21262 0.31348 0.52463 34 8.8 20.5 19.5 13.3 39.8 16 26.5 6.7 4.4 42.8 1 55.1 5.6 6.5 1

Maricopa 43,631,414 5899.1 28.1 0.63653 0.51935 0.28347 0.24629 0.37975 0.45129 20.8 5.1 28 11.6 10.9 15.2 23.8 11.4 6.6 4.5 45.4 15 5.2 4.4 5.6 1.3
Mohave 14,439,513 7457 0.8 0.57088 0.46573 0.2073 0.22313 0.36054 0.51957 26.4 7.6 25.3 13.6 9.4 30.4 17.1 22.2 5.1 1.7 23.3 4.4 26.1 3.4 5 1.7
Navajo 9,493,853 3133.5 90.7 0.5443 0.44285 0.18246 0.34792 0.34833 0.51686 39 11 21.1 16.2 13.5 18.1 26.5 18.9 8.1 2.9 58.5 1.5 21.3 8.8 8.4 2.7
Pima 39,435,964 8336.3 1584.9 0.6314 0.50707 0.26369 0.27023 0.36456 0.48341 25.9 6.8 29.5 11 8.9 19.8 20.8 15.2 6.5 3.7 48.9 13.4 10.4 3.6 7.6 2.9
Pinal 12,295,624 4025.9 6487.7 0.61104 0.49122 0.27148 0.24894 0.37533 0.47913 21.8 7.1 23.8 12.9 8.8 20.5 22.6 16.1 5.4 3.1 43.8 2.3 18.3 3.9 4.2 5.7
Santa
Cruz 2,735,480 72,448.1 846.7 0.54518 0.45941 0.24064 0.278 0.33225 0.50008 36.6 8.3 30.8 22.1 11.7 17.9 27.1 14 7 18.2 84.9 2.7 5.9 5.2 6 0.8

Yavapai 27,157,753 180,443.7 2.7 0.61416 0.45887 0.22313 0.27543 0.38545 0.50429 22.6 5.8 28.7 8.2 9.7 31.6 16.2 18.2 2.9 1.5 19.9 3.5 18.1 2.1 4.1 2.3
Yuma 31,969 6.5 0.6 0.54353 0.47035 0.22649 0.20397 0.35681 0.48591 31.9 8.6 26.6 25.4 12.6 19.1 25.2 12.6 8.3 14.2 69.4 3.9 30.2 8.5 5.1 2.9

Min/max min min min max max max max max max min min min min min min min min min min min min min min min min

Weights 0.11111 0.11111 0.11111 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083

Table 3. Aggregated Normalization.
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Apache 0.01220 0.00150 0.00184 0.05246 0.18725 0.03845 0.33025 0.05620 0.25905 0.35383 0.28179 0.06709 0.22682 0.39130 0.07097 0.31458 0.10241 0.33587 0.11174 0.33806 0.00618 0.15272 0.38916 0.38035 0.05176
Cochise 0.05675 0.00470 0.34851 0.26412 0.24252 0.23836 0.17271 0.10176 0.23037 0.11399 0.18024 0.23577 0.09216 0.09379 0.15170 0.18237 0.16960 0.21076 0.07268 0.15329 0.15556 0.13191 0.02853 0.14411 0.21308
Coconino 0.18484 0.01852 0.00003 0.30223 0.24645 0.25446 0.27048 0.27528 0.28693 0.12479 0.23101 0.29496 0.04914 0.14715 0.03602 0.15493 0.07187 0.16905 0.03362 0.15734 0.23301 0.07181 0.16951 0.11787 0.39860

Gila 0.14499 0.02069 0.03710 0.19731 0.15516 0.16902 0.26879 0.22250 0.28682 0.15612 0.16071 0.21062 0.11834 0.13098 0.23244 0.13996 0.23882 0.08564 0.01165 0.11633 0.01448 0.13114 0.08099 0.16380 0.05579
Graham 0.01276 0.00141 0.06458 0.25865 0.23257 0.23554 0.27567 0.12761 0.23907 0.13667 0.18414 0.18990 0.15575 0.08732 0.05169 0.31458 0.09426 0.24725 0.02629 0.17202 0.05597 0.14809 0.13016 0.13099 0.35827
Greenlee 0.00152 0.00507 0.00113 0.32150 0.23055 0.20385 0.26623 0.16919 0.27770 0.04268 0.02400 0.02714 0.15762 0.01618 0.03843 0.32706 0.05965 0.28895 0.02629 0.19632 0.02278 0.16890 0.13016 0.02271 0.01950
La Paz 0.00071 0.00024 0.00004 0.11505 0.05530 0.03387 0.06234 0.08594 0.31749 0.19286 0.25836 0.17955 0.24552 0.18272 0.36378 0.04516 0.35080 0.22640 0.08976 0.14013 0.01725 0.39852 0.13672 0.16052 0.01950

Maricopa 0.39903 0.01572 0.00188 0.30056 0.32111 0.33293 0.12563 0.30254 0.05806 0.05024 0.11384 0.29052 0.09777 0.14391 0.06735 0.23975 0.04336 0.22118 0.09221 0.15329 0.40451 0.01402 0.09738 0.13099 0.03160
Mohave 0.13193 0.01987 0.00003 0.19854 0.19767 0.19709 0.08210 0.23975 0.29959 0.11075 0.21148 0.25057 0.13517 0.11966 0.25051 0.07260 0.26325 0.14299 0.02385 0.04141 0.11130 0.17506 0.06459 0.11130 0.04773
Navajo 0.08668 0.00835 0.00613 0.15723 0.14501 0.15279 0.31664 0.19985 0.29001 0.24687 0.34429 0.18842 0.18380 0.18595 0.10230 0.30710 0.19606 0.29938 0.05315 0.21961 0.03108 0.13807 0.24163 0.22286 0.08806
Pima 0.36064 0.02222 0.10744 0.29259 0.29284 0.29765 0.17062 0.25289 0.17168 0.10534 0.18024 0.31272 0.08655 0.11157 0.12278 0.16491 0.12073 0.21597 0.07268 0.17101 0.36025 0.05408 0.07115 0.19661 0.09612
Pinal 0.11232 0.01072 0.43989 0.26095 0.25635 0.31154 0.13061 0.28809 0.15654 0.06105 0.19195 0.22837 0.12208 0.10996 0.13122 0.20981 0.13906 0.15863 0.05803 0.14519 0.05321 0.11496 0.08099 0.08505 0.20905
Santa
Cruz 0.02485 0.19315 0.05739 0.15860 0.18313 0.25655 0.18523 0.14729 0.23065 0.22095 0.23883 0.33195 0.29415 0.15685 0.09989 0.32207 0.09630 0.24204 0.42665 0.35325 0.06427 0.01941 0.12361 0.14411 0.01143

Yavapai 0.24830 0.48108 0.00016 0.26580 0.18188 0.22532 0.18040 0.32117 0.24554 0.06969 0.14118 0.30088 0.03418 0.12451 0.26497 0.05015 0.18181 0.02830 0.01897 0.02420 0.08640 0.11342 0.02197 0.08177 0.07193
Yuma 0.00011 0.00001 0.00002 0.15604 0.20831 0.23131 0.04609 0.22756 0.18052 0.17017 0.25054 0.26981 0.35587 0.17140 0.11435 0.27467 0.06780 0.30981 0.32900 0.27478 0.09747 0.20665 0.23180 0.11458 0.09612

Min/max min min min max max max max max max min min min min min min min min min min min min min min min min

Weights 0.11111 0.11111 0.11111 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083 0.02083
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Table 4. Weighted-Aggregated Normalized Matrix.
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Apache 0.00136 0.00017 0.00020 0.00291 0.01040 0.00214 0.01835 0.00312 0.01439 0.00737 0.00587 0.00140 0.00472 0.00815 0.00148 0.00655 0.00213 0.00700 0.00233 0.00704 0.00013 0.00318 0.00811 0.00792 0.00108
Cochise 0.00631 0.00052 0.03872 0.01467 0.01347 0.01324 0.00959 0.00565 0.01280 0.00237 0.00375 0.00491 0.00192 0.00195 0.00316 0.00380 0.00353 0.00439 0.00151 0.00319 0.00324 0.00275 0.00059 0.00300 0.00444
Coconino 0.02054 0.00206 0.00000 0.01679 0.01369 0.01414 0.01503 0.01529 0.01594 0.00260 0.00481 0.00614 0.00102 0.00307 0.00075 0.00323 0.00150 0.00352 0.00070 0.00328 0.00485 0.00150 0.00353 0.00246 0.00830

Gila 0.01611 0.00230 0.00412 0.01096 0.00862 0.00939 0.01493 0.01236 0.01593 0.00325 0.00335 0.00439 0.00247 0.00273 0.00484 0.00292 0.00497 0.00178 0.00024 0.00242 0.00030 0.00273 0.00169 0.00341 0.00116
Graham 0.00142 0.00016 0.00718 0.01437 0.01292 0.01308 0.01531 0.00709 0.01328 0.00285 0.00384 0.00396 0.00324 0.00182 0.00108 0.00655 0.00196 0.00515 0.00055 0.00358 0.00117 0.00308 0.00271 0.00273 0.00746
Greenlee 0.00017 0.00056 0.00013 0.01786 0.01281 0.01132 0.01479 0.00940 0.01543 0.00089 0.00050 0.00057 0.00328 0.00034 0.00080 0.00681 0.00124 0.00602 0.00055 0.00409 0.00047 0.00352 0.00271 0.00047 0.00041
La Paz 0.00008 0.00003 0.00000 0.00639 0.00307 0.00188 0.00346 0.00477 0.01764 0.00402 0.00538 0.00374 0.00511 0.00381 0.00758 0.00094 0.00731 0.00472 0.00187 0.00292 0.00036 0.00830 0.00285 0.00334 0.00041

Maricopa 0.04434 0.00175 0.00021 0.01670 0.01784 0.01849 0.00698 0.01681 0.00323 0.00105 0.00237 0.00605 0.00204 0.00300 0.00140 0.00499 0.00090 0.00461 0.00192 0.00319 0.00843 0.00029 0.00203 0.00273 0.00066
Mohave 0.01466 0.00221 0.00000 0.01103 0.01098 0.01095 0.00456 0.01332 0.01664 0.00231 0.00441 0.00522 0.00282 0.00249 0.00522 0.00151 0.00548 0.00298 0.00050 0.00086 0.00232 0.00365 0.00135 0.00232 0.00099
Navajo 0.00963 0.00093 0.00068 0.00873 0.00806 0.00849 0.01759 0.01110 0.01611 0.00514 0.00717 0.00392 0.00383 0.00387 0.00213 0.00640 0.00408 0.00624 0.00111 0.00457 0.00065 0.00288 0.00503 0.00464 0.00183
Pima 0.04007 0.00247 0.01194 0.01625 0.01627 0.01653 0.00948 0.01405 0.00954 0.00219 0.00375 0.00651 0.00180 0.00232 0.00256 0.00343 0.00251 0.00450 0.00151 0.00356 0.00750 0.00113 0.00148 0.00410 0.00200
Pinal 0.01248 0.00119 0.04888 0.01450 0.01424 0.01731 0.00726 0.01600 0.00870 0.00127 0.00400 0.00476 0.00254 0.00229 0.00273 0.00437 0.00290 0.00330 0.00121 0.00302 0.00111 0.00239 0.00169 0.00177 0.00435
Santa
Cruz 0.00276 0.02146 0.00638 0.00881 0.01017 0.01425 0.01029 0.00818 0.01281 0.00460 0.00497 0.00691 0.00613 0.00327 0.00208 0.00671 0.00201 0.00504 0.00889 0.00736 0.00134 0.00040 0.00257 0.00300 0.00024

Yavapai 0.02759 0.05345 0.00002 0.01477 0.01010 0.01252 0.01002 0.01784 0.01364 0.00145 0.00294 0.00627 0.00071 0.00259 0.00552 0.00104 0.00379 0.00059 0.00040 0.00050 0.00180 0.00236 0.00046 0.00170 0.00150
Yuma 0.00001 0.00000 0.00000 0.00867 0.01157 0.01285 0.00256 0.01264 0.01003 0.00354 0.00522 0.00562 0.00741 0.00357 0.00238 0.00572 0.00141 0.00645 0.00685 0.00572 0.00203 0.00430 0.00483 0.00239 0.00200

Min/max min min min max max max max max max min min min min min min min min min min min min min min min min
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Table 5. Kî and Oî values with the final rank Ti.

County Ki
^ Oi

^ Oi
^−Ki

^ RANK

Apache 0.27602 0.22651 −0.04950 0.95170
Cochise 0.30672 0.26349 −0.04322 0.95770

Coconino 0.27176 0.30145 0.02969 1.03013
Gila 0.25532 0.26869 0.01337 1.01346

Graham 0.24592 0.27578 0.02986 1.03031
Greenlee 0.18310 0.28566 0.10256 1.10801
La Paz 0.25051 0.19292 −0.05759 0.94404

Maricopa 0.30323 0.28291 −0.02032 0.97988
Mohave 0.24756 0.25977 0.01221 1.01228
Navajo 0.27339 0.26472 −0.00867 0.99137
Pima 0.32459 0.28656 −0.03803 0.96269
Pinal 0.32598 0.27928 −0.04670 0.95438

Santa Cruz 0.31004 0.25400 −0.05603 0.94551
Yavapai 0.33865 0.28087 −0.05778 0.94385
Yuma 0.26359 0.24149 −0.02210 0.97814

4.1. Sensitivity Analyses

In this paper, sensitivity analyses are performed to check the stability of the AROMAN
method. The first sensitivity analysis is based on a variation of parameter β, while the
second one refers to a variation of parameter λ.

4.1.1. Sensitivity Analysis Based on a Variation of Parameter β

As mentioned above, β represents a weighting factor ranging from 0 to 1 in the
aggregated normalization. In the context of the risk assessment, the input data were
coupled into the aggregated structure, considering β as 0.5. However, we tested different
cases when β was ranged from 0 to 1 with a step 0.1. The results of the first analysis are
presented in Table 6 and Figure 3, respectively.

Table 6. Sensitivity Analysis based on a variation of parameter β.

County 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Apache 0.97045 0.96623 0.96228 0.95856 0.95504 0.95170 0.94852 0.94548 0.94256 0.93976 0.93706
Cochise 0.93360 0.93921 0.94436 0.94912 0.95355 0.95770 0.96160 0.96529 0.96879 0.97212 0.97530

Coconino 0.97486 0.98790 0.99972 1.01059 1.02068 1.03013 1.03904 1.04749 1.05554 1.06324 1.07063
Gila 0.98087 0.98839 0.99532 1.00176 1.00778 1.01346 1.01883 1.02394 1.02882 1.03349 1.03797

Graham 0.99608 1.00400 1.01128 1.01804 1.02436 1.03031 1.03594 1.04129 1.04640 1.05130 1.05600
Greenlee 1.04282 1.05753 1.07124 1.08414 1.09636 1.10801 1.11916 1.12988 1.14022 1.15022 1.15991
La Paz 0.97718 0.96993 0.96303 0.95643 0.95011 0.94404 0.93820 0.93257 0.92713 0.92187 0.91678

Maricopa 0.94704 0.95480 0.96185 0.96832 0.97430 0.97988 0.98512 0.99006 0.99473 0.99918 1.00342
Mohave 0.98435 0.99077 0.99670 1.00222 1.00740 1.01228 1.01691 1.02131 1.02552 1.02954 1.03341
Navajo 0.97881 0.98185 0.98456 0.98703 0.98929 0.99137 0.99331 0.99512 0.99682 0.99843 0.99995
Pima 0.92935 0.93734 0.94453 0.95108 0.95710 0.96269 0.96790 0.97279 0.97741 0.98178 0.98594
Pinal 0.91928 0.92749 0.93499 0.94191 0.94835 0.95438 0.96005 0.96541 0.97050 0.97535 0.97998
Santa
Cruz 0.93716 0.93921 0.94104 0.94268 0.94416 0.94551 0.94674 0.94787 0.94891 0.94987 0.95077

Yavapai 0.89612 0.90704 0.91714 0.92658 0.93546 0.94385 0.95184 0.95945 0.96675 0.97376 0.98052
Yuma 0.98114 0.98050 0.97989 0.97929 0.97871 0.97814 0.97759 0.97706 0.97653 0.97602 0.97552

The results of the first sensitivity analysis reveal that the final ranking alternatives
remain the same regardless of changing the parameter β.
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Figure 3. Sensitivity Analysis on Parameter β.

4.1.2. Sensitivity Analysis Based on a Variation of Parameter λ

The second sensitivity analysis is based on a variation of parameter λ. As mentioned
above, λ represents a coefficient degree of each criterion type and can vary between the
intervals 0 and 1. We obtained different ranks for each parameter λ (0.1–0.9) by applying
Equations (8)–(10), respectively. We made variations with a step of 0.1 and the obtained
results were depicted in Figure 4. In addition, the results were also presented in Table 7.
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Table 7. Sensitivity Analysis based on a variation of parameter λ.

County 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Apache 0.38725 0.49462 0.60373 0.71401 0.82799 0.95170 1.09579 1.27803 1.52902 1.90502 2.51888
Cochise 0.39433 0.49716 0.60355 0.71353 0.82969 0.95770 1.10727 1.29440 1.54592 1.90925 2.47422

Coconino 0.40287 0.51938 0.63952 0.76259 0.89093 1.03013 1.18973 1.38488 1.63988 1.99555 2.52476
Gila 0.39542 0.51316 0.63313 0.75429 0.87907 1.01346 1.16783 1.35884 1.61382 1.98022 2.54674

Graham 0.39695 0.51842 0.64194 0.76623 0.89367 1.03031 1.18656 1.37900 1.63452 1.99934 2.55876
Greenlee 0.39916 0.54485 0.68909 0.82859 0.96581 1.10801 1.26697 1.46037 1.71549 2.07770 2.62866
La Paz 0.38183 0.49340 0.60475 0.71468 0.82564 0.94404 1.08131 1.25682 1.50473 1.89042 2.55294

Maricopa 0.39853 0.50426 0.61396 0.72760 0.84773 0.97988 1.13352 1.32400 1.57661 1.93499 2.47948
Mohave 0.39356 0.51273 0.63356 0.75486 0.87905 1.01228 1.16521 1.35496 1.60978 1.97915 2.55669
Navajo 0.39458 0.50656 0.62125 0.73808 0.85949 0.99137 1.14385 1.33341 1.58738 1.95366 2.52252
Pima 0.39936 0.50005 0.60520 0.71514 0.83250 0.96269 1.11489 1.30404 1.55477 1.90958 2.44646
Pinal 0.39772 0.49733 0.60125 0.70983 0.82572 0.95438 1.10509 1.29303 1.54340 1.90003 2.44425
Santa
Cruz 0.39240 0.49345 0.59788 0.70577 0.81976 0.94551 1.09286 1.27809 1.52876 1.89417 2.46916

Yavapai 0.39808 0.49481 0.59608 0.70243 0.81655 0.94385 1.09348 1.28038 1.52940 1.88381 2.42375
Yuma 0.38997 0.50236 0.61651 0.73160 0.85011 0.97814 1.12634 1.31219 1.56520 1.93850 2.53583

In the second sensitivity analysis, we revealed that the ranking order remains stable,
except when λ = 0, where Coconino holds the first position, and Greenlee is the second
best. In conclusion, both sensitivity analyses indicate a high stability level of the ARO-
MAN method.

4.2. Comparative Analysis

Comparative Analysis (CA) is performed to check the reliability of the results. In
addition to the AROMAN method, the same problem is solved by applying the MARCOS
method. The results of the MARCOS method are presented in Figure 5.
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Figure 5. MARCOS ranking method.

As can be noticed, the MARCOS method ranks Yuma as the highest, followed by
Coconino, Greenlee, etc. The comparison results of both methods are presented in Figure 6.

In case of the AROMAN, Greenlee has the highest-ranking value, followed by Co-
conino and Graham. The ranking order between two methods is slightly different. However,
we accept the ranking order obtained by the AROMAN. The AROMAN method has a high
level of sensitivity in terms of criteria type. In our case, most of the criteria are minimized
and that significantly affected the decision.
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5. Managerial Implications

The results indicate that the AROMAN methodology leads to a stable wildfire risk
ranking of communities. While this paper focuses on a detailed explanation of the method
using 15 counties in the state of Arizona, the true potential of this methodology becomes
evident in larger-scale studies. At higher managerial levels, understanding the distribution
of risk among communities plays a crucial role in appropriate resource allocation and
prioritizing actions. Specifically, this risk ranking methodology can serve as a valuable tool
for policy-makers, aiding them in understanding different combinations of geographical
and social characteristics that result in similar wildfire risks. This understanding will
assist them in formulating more unbiased and equitable policies that encompass a broader
spectrum of communities.

Another crucial aspect of wildfire risk planning and management is the ability to
assess the effectiveness of the plans during the planning phase. The AROMAN-based
wildfire risk ranking allows us to compare the overall risk distribution before and after each
scenario. Consequently, planners have the opportunity to compare several plans, which
may involve various wildfire mitigation actions and vulnerability reductions, among other
factors, and determine the optimum scenario with the greatest overall risk reduction. In
this manner, MCDM provides an ideal tool for planners to establish optimal goals.

Last but not least, disaster planners and managers must always take into account
the potential combination of multiple natural hazards affecting communities. This is
particularly crucial since numerous planning components influence the risk of various
natural disasters. For instance, enhancing community resilience across multiple facets
would reduce the risk of wildfires and mitigate the risk of numerous other potential
disasters. Consequently, the AROMAN risk analysis methodology, which incorporates
more factors for various types of disasters, can be applied to large-scale general disaster
planning efforts.

In addition to the discussed benefits of the proposed methodology, presenting a list of
its limitations can be highly informative. Similar to any other MCDM-based methodology,
the proposed approach necessitates specific input data of a certain quality. Although all of
the requisite datasets for this study are available for the entire United States, comparable
datasets with the same set of factors are not available for all other regions or countries.
This limitation constrains the direct applicability of our methodology beyond the United
States. However, it is essential to note that the primary focus of the paper is on the MCDM
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methodology rather than the specific criteria applied. Consequently, the same methodology
can be adapted for other countries

Another limitation of the proposed methodology is its scale of application. This paper
seeks to furnish a wildfire risk scoring system suitable for large-scale studies, encompassing
the scale of states or regional assessments. While this objective brings numerous advantages
for regional and federal management, especially in cases where data quality remains
relatively consistent across all communities (as is the case in our study), it introduces
challenges when applied to smaller communities. The required data is not always readily
available for such communities, and disparate datasets may not share the same resolution,
posing difficulties in integrating these incompatible datasets.

For example, the BRIC dataset provides all six factors at the county level for the entire
United States. In contrast, the NRI and SVI datasets offer data at both the county and
census tracts (official sub-county divisions) levels. Consequently, generating risk scores for
communities at scales smaller than the county level will introduce new challenges based
on the availability of relevant datasets.

6. Conclusions

Estimating risk is typically a complex task, given the numerous uncertainties involved
across all aspects of the assessment. This complexity is amplified when addressing natural
disasters and their impact on human communities. A comprehensive risk assessment
methodology must encompass a vast array of pertinent factors. However, the analysis
of numerous factors necessitates a systematic analytical approach. AROMAN, a method
extensively employed across various disciplines, offers an ideal framework for ranking the
risk and safety of human communities in the context of natural hazards.

1. This paper utilizes the AROMAN method for wildfire risk assessment. The methodol-
ogy is tested at the county level in the state of Arizona to evaluate and rank counties
according to their wildfire safety. This study incorporates the factors utilized by the
National Risk Index [13], encompassing a total of 25 factors divided into three main
categories. Each of these categories is regarded as equally significant, and within
each category, the factors are assigned identical weights. The conducted sensitivity
analysis demonstrates that the obtained results remain highly stable even when the
model’s parameters are adjusted.

2. The results reveal that Greenlee County received the highest safety ranking among all
of the counties in Arizona. This conclusion appears to be well-founded upon closer
examination of the risk factors. Within the EAL group, both the expected annual
loss for buildings and agriculture are over 98% lower than the state-wide average for
Arizona. Furthermore, Greenlee’s EAL for its population is more than 90% lower than
the average value. In terms of resilience, all six factors for Greenlee County hover
around the state average. However, in the context of social vulnerability, seven factors
exhibit values between 50% and 74% lower than the state averages, while only three
factors have values approximately 20% higher than the average.

3. Conversely, La Paz County has received the highest risk rating (indicating the lowest
level of safety) in Arizona. A detailed analysis of the factors in this scenario provides
valuable insights. While this county exhibits lower EAL to wildfires compared to
Greenlee County, its resilience and vulnerability factors differ significantly. It is
essential to bear in mind that EAL assesses the exposure of community assets to
wildfires, but exposure alone does not solely determine the risk level.

4. In the case of La Paz County, five out of six factors in the resilience group fall below
the state averages. Additionally, 10 out of 16 social vulnerability factors indicate that
La Paz County is considerably more vulnerable than the state average. Specifically,
this county demonstrates vulnerability levels exceeding 87%, 61%, and 162% more
than the state average concerning elderly residents, disabilities, and mobile homes.

5. In this research, the factors in each group (EAL, resilience, and vulnerability) are given
equal weight. Concerning EAL, all three factors (buildings, agriculture, and popu-
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lation losses) are specifically calculated for wildfire and converted into US dollars.
This conversion inherently incorporates expert judgment, making assigning equal
weights to these factors in general risk calculations reasonable. However, the corre-
sponding factors are assumed to carry equal weight for resilience and vulnerability
due to the original methodologies underlying the BRIC [16] and SVI [14,15] indices.
Nonetheless, additional expert opinions can alter the relative importance of factors
within each group, leading to more insightful ranking results. Future work may focus
on gathering surveys from experts in the field of disaster management, specifically in
wildfire scenarios, to establish a more realistic set of weights within each group. The
relative importance may vary based on different objectives; for example, factors may
hold different relative importance for wildfire evacuation compared to economic or
environmental considerations.
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