
1.  Introduction
Wildfire is one of the most devastating natural hazards in the United States, posing a threat to air quality, infra-
structure, lives, and property. According to the U.S. National Interagency Fire Center, annual-averaged wildfires 
in the United States burned 6.8 million acres with a suppression cost of $1.8 billion since 2010 (NIFC, 2020). 
Wildfire frequency and size is projected to increase in the future due to climate change (e.g., Abatzoglou & 
Williams,  2016; Brown et  al.,  2021; Jay et  al.,  2018), therefore, fire control and management practices will 
continue to grow in importance. One central objective of wildfire management is to determine wildfire poten-
tial (danger) in advance so that forest managers can make informed decisions on how to allocate the available 
resources. Wildfire potential and danger are interchangeably used in this study, which refers to likelihood that a 
wildfire will occur and the ability to spread once it has started (e.g., Bradshaw et al., 1984; Burgan et al., 1998; 
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Hardy & Hardy, 2007). To quantify the wildfire potential, a continuous or categorical scale based on weather 
conditions and fuel moisture was developed and referred to as fire danger index (FDI). The most commonly 
used FDIs in North America include the U.S. Geological Survey (USGS) Fire Potential Index (FPI; Burgan 
et  al.,  1998), the Canadian Forest Fire Weather Index (FWI) System (Wagner,  1974,  1987), and the Energy 
Release Component (ERC) and Burning Index (BI) from the National Fire Danger Rating System (NFDRS; 
Deeming et al., 1977). These fire indices generally consider a set of weather and/or environmental variables such 
as temperature, relative humidity, wind speeds, and fuel types to determine the potential that a fire may break 
out, if ignited. In practice, drought monitoring indices such as Keetch-Byram Drought Index (KBDI; Keetch & 
Byram, 1968) are also often used, as drought conditions are considered to exacerbate the occurrences of wildfires.

Prior to the 1990s, FDIs were generally calculated at the point scale where co-located weather stations and fuel 
moisture were recorded. The recent advent of remote sensing in weather and earth sciences has made estimates of 
fire danger over a large domain while at fine-grained level increasingly feasible (see Hardy & Hardy, 2007, for a 
review of FDIs in the United States). In addition, the massive growth of gridded data from ground-based observa-
tions, weather forecasting, and climate modeling also facilitates the estimation of FDIs over a large spatial context 
with higher temporal resolution (e.g., Baijnath-Rodino et al., 2023). For instance, the USGS Earth Resources 
Observation and Science Center provides daily forecasts of FPI over the conterminous United States (CONUS) 
at 1 km resolution using daily weather forecasts from the National Digital Forecast Database (Eidenshink & 
Howard, 2012). The use of FDIs for fire weather monitoring and risk management has become an important part 
of the routine operations adopted by various agencies and utility sectors (e.g., Burgan et al., 1998; Di Giuseppe 
et al., 2016; Hardy & Hardy, 2007).

In addition, FDIs have also been used to investigate the impact of climate change on wildfire size by the mid- and 
end-of the 21st century (e.g., Abatzoglou & Williams, 2016; Brown et al., 2021), which could be useful for long-
term planning and decision making. Although a wealth of FDI products is now available, previous studies that 
examined the impact of climate change on wildfires were often based on a single FDI (e.g., Tian et al., 2011). 
Thus, the inherent uncertainty of using an individual index will propagate to the estimated climate change impacts 
on the wildfire danger. Abatzoglou and Williams (2016) shows different predictability exhibited by multiple FDIs 
and a drought index in characterizing the total wildfire sizes over the western CONUS. This diversity in predicta-
bility implies that use of different empirical FDIs could lead to different estimates of occurrence, intensities, and 
spatial extents of the fire danger risk. It is thus essential to quantify the performance of FDIs at various conditions 
and understand the contributing factors that drive the differences in the FDI predictions.

Only a few studies have evaluated the predictability of FDIs with respect to observed fire characteristics, and such 
evaluations were often performed at regional and seasonal to annual scales (e.g., Abatzoglou & Williams, 2016; 
Klaver et al., 1997). However, fire monitoring and management practices require reliable metrics and assessment 
tools at a wide range of spatial and temporal scales from local to the national level and from the near-real time 
to the annual/seasonal outlook. As climate change would increase fire risks inevitably in the fire-prone regions 
at present, some historically low-fire-prone regions, such as the northeastern United States, might also become 
high-risk areas in the future (e.g., Brown et al., 2021). Therefore, there is a critical need to assess the FDI predict-
ability at a range of spatiotemporal scales over the entire CONUS in addition to the western US.

In this study, we first perform a rigorous sensitivity analysis (SA) on four commonly used FDIs (FPI, FWI, 
ERC, and BI) to unravel the dependence of individual FDI on a set of input weather and environmental vari-
ables. The findings will allow us to understand the differences in the FDI predictions. We further analyze the 
performance of each FDI in predicting the observed fire sizes over the CONUS for the 1984–2019 period at 
multiple temporal (daily, monthly, and annually) and spatial (grid, regional, and CONUS) scales. Finally, we use 
the high-resolution regional climate model simulations for the present-day (1995–2004) and projections for late 
this century (2085–2094) to examine the projected changes in each individual FDI and provide a comprehensive 
assessment of the seasonal and spatial changes in wildfire potential over the CONUS based on the multiple FDIs.

2.  Data Sets
2.1.  Wildfire Data

To obtain the long-term wildfire size for quantification of the predictability of FDIs in historical time periods, 
we use satellite remote sensing data for the 1984–2019 period from the Monitoring Trends in Burn Severity 
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Project (MTBS; Eidenshink et al., 2007). MTBS provides measurements of fire sizes (i.e., perimeters) larger 
than 1,000 (500) acres in the western (eastern) CONUS. A total of 13,353 historical wildfires, which do not 
include prescribed fires, were analyzed in this study. Note that these observed fire sizes represent the perimeter 
of fire-influenced areas, consisting of inner patches unburned and burned in low, moderate and high severities 
(Eidenshink et al., 2007).

2.2.  Fire Danger Indices (FDIs)

This study considers four commonly used FDIs, calculated at a daily and 1/24° (about 4  km) resolution for 
1984–2019: FPI, FWI, ERC, and BI (Figure S1 in Supporting Information S1). These four FDIs are based on 
both shared (e.g., temperature and precipitation) and unique (e.g., wind speeds in FWI and fuel type in FPI) input 
variables, representing different aspects of fire conditions. The code for calculating FDIs in this study is adapted 
from National Center for Atmospheric Research's Fire Indices (NCAR, 2023).

2.2.1.  FPI

FPI is an indicator of the wildland vegetation flammability that incorporates both satellite and surface observa-
tions (Burgan et al., 1998; Figure S1a in Supporting Information S1). It depends on the NFDRS fuel model map 
(Bradshaw et al., 1984), normalized difference vegetation index (NDVI; Goward et al., 1991), and an estimate 
of the so-called 10 hr time lag fuel moisture (Fosberg & Deeming, 1971) which represents the moisture content 
of small dead fuel (approximate 0.25–1 inch in diameter; Figure S1b in Supporting Information S1). The key 
assumption of FPI is that fire potential can be assessed if the proportion of live to dead vegetation is accurately 
defined. The general form of FPI calculation is:

FPI = 100 × 𝑓𝑓dead ×

(

1.0 −
FM10

FMextinction

)

� (1)

where fdead is the proportion of dead vegetation, FM10 is the 10 hr fuel moisture and FMextinction is the extinction 
fuel moisture. fdead is calculated using NDVI; FMextinction represents the highest level of fuel moisture, making it 
difficult for a fire to sustain itself.

FPI is shown to highly correlate with the fire occurrences over the U.S. west coast (Klaver et al., 1997), southern 
Europe (López et al., 2002), and the island of Kalimantan, Indonesia (Sudiana et al., 2003). The USGS Earth 
Resources Observation and Science Center coupled FPI with a logistic regression model to forecast large wild-
fires over the CONUS (see Preisler et al., 2009, 2015 for a detailed description).

2.2.2.  Fire Weather Index

FWI simulates the effects of air temperature, humidity, vapor pressure deficit, and wind speed on the fuel 
aridity and consequentially on the fire occurrence and spread (Figure S1b in Supporting Information  S1; 
Wagner, 1974, 1987). First, FWI updates the daily moisture content for three different fuel types (fine fuel, duff, 
and deep compact organic layers) as nonlinear functions of atmospheric variables (second row in Figure S1b in 
Supporting Information S1). Next, it calculates the Initial Spread Index, which is a measure of the rate of wildfire 
spread without the influence of fuel availability. This is done by multiplying two exponential functions: one based 
on wind speed and the other based on fine fuel moisture. Finally, the Initial Spread Index is scaled by the available 
fuels (i.e., build up index in Figure S1b in Supporting Information S1) to produce a unitless FWI that represents 
the intensity of the spreading fire, given the current fuel availability.

Although FWI was designed to describe fire behavior for Canadian forest, such as jack pine stands, the index has 
proven effective in other regions, such as Australia (Cruz & Plucinski, 2007), New Zealand, and Malaysia (Taylor 
& Alexander, 2006) as well as globally (Abatzoglou, Williams, et al., 2018).

2.2.3.  ERC and BI

Similar to FWI, the NFDRS comprises two primary components (Figure S1c in Supporting Information S1): 
the ERC, which measures the available fuels, and the BI, which evaluates the potential rate of wildfire spread 
(Bradshaw et al., 1984; Deeming et al., 1977). First, the NFDRS calculates both live and dead fuel moisture of 
different fuel types based on various atmospheric variables, such as air temperature, relative humidity, and vapor 
pressure deficit (Figure S1c in Supporting Information S1). Then, the ERC is calculated as an empirical function 
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of dead and live fuel moisture, temperature, and relative humidity (Figure S1c in Supporting Information S1). 
Finally, BI is derived as a nonlinear function of the product of ERC and a fire spread component that depends on 
both windspeed and fuel availability (Byram, 1959; Figure S1c in Supporting Information S1).

In this study, we applied the latest 2016 NFDRS fuel model (Jolly, 2018) for calculating the ERC and BI. Because 
the NFDRS accounts for both short-term weather conditions and long-term fuel moisture, ERC, and BI capture 
both daily fluctuations and seasonal oscillations in wildfire potential. Both ERC and BI have been widely used 
for describing fire danger, either in operational fire management or research (Di Giuseppe et al., 2016; Finney 
et al., 2011; Freeborn et al., 2016).

2.3.  Meteorological Forcing, Remote Sensing, and Regional Climate Model Simulations

To calculate the four FDIs for the 1984–2019 period, the gridded surface meteorological data (GridMet; 
Abatzoglou, 2013) at the daily and 1/24° (about 4 km) resolution for the CONUS was used. GridMet aggregates 
North American Land Data Assimilation System version 2 (NLDAS-2; Mitchell et  al.,  2004) meteorological 
forcings and the spatial attributes including orographic effects developed by the Parametrized Regression on 
Independent Slopes Model (Daly et al., 2008). Gridded daily NDVI at 0.05° (Vermote, 2019) and the NFDRS 
1 km fuel model map (Burgan et al., 1997, 1999; Loveland et al., 1991) were also obtained for calculating FPI.

To understand the potential changes of fire danger in the future, we employed two sets of regional climate 
simulations for the present-day (1995–2004) and the end of the century (2085–2094 under the Representative 
Concentration Pathways (RCP) 8.5 scenario; Taylor et al., 2012) using the Weather Research and Forecast model 
(WRF; Skamarock et al., 2008) at a grid spacing of 12 km. These WRF regional model simulations (see Wang 
& Kotamarthi,  2015) were forced by the boundary conditions generated from the bias-corrected Community 
Climate System Model version 4 (CCSM4) Global Climate Model (GCM) outputs (Gent et al., 2011). Due to 
the limited computational resource, Wang and Kotamarthi  (2015) only performed six ensembles of 10 years 
WRF simulation for historic, mid-century, and end of century climate. To demonstrate a relatively robust climate 
change signal and its impacts on wildfire risks, we focused on end-of-century under RCP 8.5 scenario.

The present-day WRF simulations reproduce the annual and seasonal precipitation and surface temperature 
climatology reasonably well over the CONUS, while the end-of-century simulations predict a continental-scale 
warming of ∼2–5°C, and over 50% decreases in annual mean precipitation over the southwestern United States 
(Wang & Kotamarthi, 2015). Our previous study (Brown et al., 2021) examined the similar WRF simulations 
forced by two other GCM boundary conditions (Donner et al., 2011; Jones et al., 2011) and found consistent 
changes in KBDI between the present day and end of the 21st century. Therefore, in this study, we consider the 
FDIs derived from the CCSM4-forced WRF simulations only. The regional climate simulations with WRF do not 
explicitly account for vegetation dynamics (which are prescribed as static instead) and thus cannot produce the 
NDVI changes over time. Consequently, we used the satellite retrievals of NDVI from the 1995–2004 period for 
both present-day and future WRF-based FPI calculations. This caveat might reduce the sensitivity of predicted 
fire potential in response to the climate change.

3.  Methods
3.1.  Delta Moment-Independent Sensitivity Analysis (SA)

The delta moment-independent analysis (referred to as Delta; Borgonovo, 2007; Plischke et al., 2013) is a global 
SA technique that assesses the influence of inputs on an entire distribution, rather than certain orders of statistical 
moments of model output. Unlike some other SA methods (e.g., the variance-based Sobol method; Sobol, 2001), 
the Delta method we used here does not require independence among inputs. These features make the Delta 
method well-suited for performing SA for the FDIs, since most input variables are correlated with each other 
to a certain degree (e.g., precipitation and relative humidity) and may influence the output distribution without 
disturbing a particular moment. A more detailed description of the Delta method can be found in the Supporting 
Information S1 and Borgonovo (2007). We provide a summary in the following paragraphs:

Considering that all the model inputs 𝐴𝐴 ⃖⃖⃑𝑋𝑋 are free to vary, the output Y has the unconditional probability density 
function (PDF) fY(y). Then, when one of the inputs Xi is fixed, a conditional PDF fY|Xi(y) is generated. The sepa-
ration between them is defined as
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𝑠𝑠(𝑋𝑋𝑖𝑖) = ∫ |𝑓𝑓𝑌𝑌 (𝑦𝑦) − 𝑓𝑓𝑌𝑌 |𝑋𝑋𝑖𝑖
(𝑦𝑦)|d𝑦𝑦� (2)

Since the separation s(Xi) is dependent on the random input Xi, the expected separation is given by 𝐴𝐴 𝐴𝐴𝑋𝑋𝑖𝑖
 , ranging 

from 0 to 2. Finally, the Delta measure, δi, is defined as half of 𝐴𝐴 𝐴𝐴𝑋𝑋𝑖𝑖
 .

𝛿𝛿𝑖𝑖 =
1

2
𝐸𝐸𝑋𝑋𝑖𝑖

[𝑠𝑠(𝑋𝑋𝑖𝑖)] =
1

2 ∫ 𝑓𝑓𝑋𝑋𝑖𝑖
(𝑥𝑥𝑖𝑖)

[

∫ |𝑓𝑓𝑌𝑌 (𝑦𝑦) − 𝑓𝑓𝑌𝑌 |𝑋𝑋𝑖𝑖
(𝑦𝑦)|d𝑦𝑦

]

d𝑥𝑥𝑖𝑖� (3)

The possible values of δi range between 0 and 1, and δi is zero when Y is independent of Xi and unity when Y is a 
univariate function of Xi. In this study, Delta SA was performed for each FDI using an open source Python library, 
SALib (Herman & Usher, 2017). Figure S2 in Supporting Information S1 illustrates how FPI distributions vary 
with changes in each input variable, along with their calculated Delta sensitivities.

To calculate the Delta SA for each FDI, we performed random sampling of 50,000 pairs of computed FDIs 
and their corresponding inputs across the CONUS using data from 1984 to 2019 (see Section 2.2) (A prior test 
using an increasing number of sample size N found that the Delta measures stabilize around N = 10,000; thus, 
N = 50,000 ensures a large sample size as well as computational efficiency). This sampling process was repeated 
to generate 100 realizations of the Delta measures to represent sampling uncertainty.

3.2.  Trend and Correlation

Trend analyses were conducted on the annual occurrences of MTBS wildfires during the period of 1984–2019 
at both regional (Level-2 Eco-regions; CEC, 1999) and CONUS scales. The Level-2 eco-region classification 
system divides the US into 50 distinct eco-regions based on factors such as climate, geology, topography, vege-
tation, and soils. We applied nonparametric Mann–Kendall (MK) tests (Mann, 1945), which does not require the 
data to conform any specific statistical distribution, for detecting monotonic trends in time. To understand the 
relationships between fire size and four FDIs, we calculated the Spearman's rank correlation (Spearman, 1904) 
at nine different spatiotemporal scales, ranging spatially from single grid, to regional and CONUS scales; and 
temporally from daily, to monthly and annually. For each scale, the logarithm of corresponding total wildfire size 
from MTBS is correlated with the four FDIs estimated from a combination of assimilated meteorological forcings 
(NLDAS-2), satellite vegetation (NDVI), and fuel maps (NFDRS).

4.  Results
4.1.  The Seasonality and Long-Term Trends of Historical Wildfires

We analyzed a total of 13,353 observed MTBS wildfire occurrences over the CONUS from 1984 to 2019. Seasonal 
variations of annual wildfire frequency summing over the CONUS reveal two dominant peaks, a primary one in 
August and a secondary peak in April, followed by an additional local maximum in November (Figure 1a). To 
determine the spatial distribution of wildfire seasonality, we applied a 2D Gaussian filter with a size of 132 km 
and a standard deviation of 16 km to compute wildfire occurrence (i.e., day of year) over each NLDAS-2 4 km 
grid cell which have been further grouped into four seasons: spring (March–May), summer (June–August), fall 
(September–November), and winter (December–February; Figure 1b). Most wildfires in the western US occurred 
in summer when strong convective storms are frequent and associated with intense lightning for the onset of fires 
(Balch et al., 2017). This is consistent with the peak season of the total fire counts over the CONUS, suggesting 
that the wildfires in the western US dominate the total number of wildfires in the country. A few exceptions 
include northwest Oregon, central Wyoming and North Dakota, and Central and Southern California, where 
wildfire seasons dominate in fall (Figure 1), for example, the latter is coincident with the hot and dry conditions 
driven by the Santa Ana winds (ongoing work). In the eastern US, wildfires mostly occurred in the spring, except 
the central Appalachians where wildfires occurred more frequently in fall. The spring wildfires in eastern US 
are suggested to be associated with a dry-down after snowmelt and ahead of summer rainfalls (e.g., Gleason 
et al., 2019; Westerling, 2016).

MK trend tests (two sided) show that the number of wildfires and their total burned areas over the CONUS have 
increased significantly in the last 36 years by 94% and 337%, respectively (Figure 1c), consistent with other 
recent studies (e.g., Boisramé et al., 2022; Iglesias et al., 2022). The percent increase in total wildfire size is more 
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than three times larger than the increase in wildfire frequency (Figure 1c), indicating the mean fire size has also 
increased in the last four decades. The increase in wildfire size is prevalent across different eco-regions over the 
CONUS except for the four regions which show insignificant decreases (Figure 1d). They are mostly over the 
northwestern US, including the Mixed Wood Shield (eco-region 5.2) and Plains (eco-region 8.1), and Temperate 
Prairies (eco-region 9.2).

In general, the more frequent and enlarged wildfires are attributed to both increasing drought severity (Dennison 
et al., 2014; Gamelin et al., 2022) and fire suppression activity that leads to fuel build-up (Brotons et al., 2013). 
In addition, the interannual variabilities in wildfires size and frequency are suggested to link to the interannual 
variability in precipitation, surface air temperature, and vapor pressure deficit (Figure 1c; Abatzoglou, Williams, 
et al., 2018). For example, we found that the mean annual temperature over the CONUS during the 1984–2019 
period correlates (at 5% significance level) with the corresponding wildfire sizes and frequencies, with the 
Spearman coefficients of 0.54 and 0.59, respectively. This strong link between fire and weather on the annual 
basis suggests that the antecedent meteorological conditions (e.g., precipitation and temperature) could be used 
in predicting interannual variations and long-term trend of wildfire sizes (Abolafia-Rosenzweig et al., 2022).

4.2.  SA of FDIs

To better understand the differences in the predicted fire potential by various FDI, we first quantify the depend-
ence of FDIs on a set of the atmospheric and surface conditions, which are used in any of the four FDI formu-
lations. Delta measures (Equation 2) in statistics are calculated for each individual FDI and their values that 
exceed 95th percentile over the CONUS for the 1984–2019 period, as shown in Figure 2. Among all the input 
variables considered, daily minimum relative humidity (RHmin) is identified as the most or second most dominant 
parameter in calculating the four different FDIs (Figure 2a), as well as for the upper tail only of each FDI (>95th 
percentiles; Figure 2b). The latter denotes the large fire potential indicated by FDIs. This strong dependence on 
RHmin by the four FDIs is consistent with the fact that all of them use RHmin as an input to estimate the dead 
fuel moisture, which plays an important role in determining the fire behavior. In contrast, some of the other 
shared input variables, like Tmax, show different Delta measures for the four FDIs, indicating that each FDI was 
designed specifically to characterize the fire danger from varied aspects. Thus, the same weather variable may 

Figure 1.  The seasonality of historical wildfires (a) and its spatial distribution (b) over the CONUS. Trends in annual total wildfire size and frequency over the 
CONUS (c) and each individual eco-region (d). Fire seasons in panel (b) are grouped into spring (March–May), summer (June–August), fall (September–November), 
and winter (December–February). Filled (unfilled) triangles in panel (d) indicate significant (insignificant) trends at 5% level. Trends in number of wildfires over eco 
regions are not shown in panel (d) though they are comparable to trends in the fire size. The name of each eco-region in panel (d) can be found in Table 1.
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carry different weights in assessment of the wildfire danger, depending on the choice of the FDI. As a result, 
some FDIs such as FWI would give prominence to the hot (high Tmax) and dry (low RHmin) conditions for driving 
high fire risks, while the more complicated FDIs such as ERC and BI place relatively less weight on surface air 
temperature, as they also take the fuel moisture (or flammability) on the ground into account, which is related to 
daily precipitation (low Pdaily).

For extreme FDI values—those exceeding the 95th percentile—the SA shows largely consistent results with the 
entire distribution of the FDI values (Figure 2a), except that the role of wind speed (Wdaily) has been highlighted 
(Figure 2b). Among the four FDIs, only FWI and BI account for the spread of wildfires and depend on wind 
speed. Notably, Wdaily has the least influence on both FWI and BI when considering all the predictions (Figure 2a) 
but plays a remarkably larger role on the predicted values that exceed 95th percentiles (Figure 2b). This reflects 
that surface wind speed may be less important under the low or moderate fire potential compared to other envi-
ronmental conditions, but become more critical under the high-fire potential (e.g., high temperature and low 
humidity), as strong winds can intensify the spread of wildfires and exacerbate the fire severity after fires break 
out. Mathematically, it is consistent with the formulation of wind speeds in calculating FWI and BI, in which the 
exponential impacts of wind speed are “triggered” when other factors are also indicative of high fire potentials 
(see Figure S3 in Supporting Information S1 for an example showing FWI as a function of wind speed).

The most sensitive input parameter for each FDI at the grid level varies both spatially and across different FDIs 
(Figure S4 in Supporting Information S1). In the western CONUS, RHmin and Pdaily are the two most sensitive 
input variables, while in the eastern CONUS, NDVI, Tmax, and Pdaily are the most sensitive variables for FPI, FWI, 

Figure 2.  Delta-based global sensitivity analyses for (a) four fire danger indices (FDIs) and (b) FDIs that exceed the 95th 
percentile. Variables: daily precipitation (Pdaily), daily maximum and minimum temperature (Tmax and Tmin), daily maximum 
and minimum relative humidity (RHmax and RHmin), fuel type (Fuel), weekly maximum NDVI (NDVI), and daily mean 
shortwave radiation (Srad) and wind speed (Wdaily).
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and ERC and BI, respectively. Clearly, the estimated fire potential by a specific FDI relies on what input parame-
ters it considers, and the relative importance of each input parameter based on the formulation. The results of SA 
also highlight that even these simple FDIs represent complex, nonlinear systems, and the expectations inherent in 
its formulation can be different from model performance. As those input parameters have different variability in 
time and space, it would lead to the diverse predictions of wildfire potential by the FDIs on different scales. Next, 
we will examine the scale dependence of FDIs in predicting the wildfire size in observations.

4.3.  Correlation Between Fire Size and FDIs

We calculated the Spearman correlations between the mean FDIs and the total wildfire sizes at three differ-
ent spatiotemporal scales: grid and daily (Figures 3a–3d), regional and monthly (Figures 3e–3h), and CONUS 
and annually (Figures  3i–3l). For example, regional and monthly values (Figures  3e–3h) refer to as correla-
tion between the mean FDIs and the total wildfire sizes in each eco-region for every month. In general, all 
correlation coefficients are statistically significant and increasing with coarsening of the spatiotemporal scales, 
independent of the FDI option. All indices show low but significant correlations with fire sizes at the grid and 
daily scale, while they show more robust predictability for regional and monthly and CONUS and annually 
fire size (Figures 3i–3l). Specifically, the weak correlations depicted in the panels (a) to (d) show that the daily 
predictions of FDIs at the ∼4 km grid spacing overestimate the variability in the wildfire sizes. It means that 
while the daily and local changes of those input parameters (weather and surface fuel conditions) for FDI may 

Figure 3.  Relationships between total wildfire sizes (on the logarithmic scale) and mean normalized fire danger indices for three different scales: grid and daily (a–d), 
regional and monthly (e–h), and CONUS and annually (i–l). Spearman's correlation (ρ) and sample size (N) are given in the top of each panel. Correlations in all panels 
are statistically significant.
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frequently point to the favorable conditions for wildfires, in reality, the 
occurrences of wildfires are much less in counts or less severe in burned 
areas, indicated by the weak responses (ρ < 0.32) of the observed fire sizes 
to the FDI variations. This finding reinforces the challenges existing in the 
local-scale, near real-time wildfire predictions, as the occurrences and sizes 
of wildfire at these fine scales are highly variable and influenced by many 
local factors including ignition causes (human-vs. lightning-related; e.g., 
Abatzoglou, Balch, et al., 2018; Balch et al., 2017), fire suppression activi-
ties (e.g., Steel et al., 2015), and housing and road densities (e.g., Sturtevant 
& Cleland, 2007). These factors along with other unknown processes subdue 
the influences of the input parameters accounted by the existing FDIs. On the 
other hand, the dominance of those input parameters in predicting the wild-
fire potential is revealed gradually with the increased correlation against the 
larger-scale wildfire observations, making the FDI predictions more reliable 
over a large context.

Besides their strong correlations with fire size, four FDIs at the CONUS-
wide annual scale also show similar upward trends in time and strong inter-
annual variability for the 1984–2019 period (Figure 4), consistent with the 
historical wildfire data over the CONUS in Figure  1c. Four annual mean 

FDIs indicate the monotonic positive trends with the MK tests (Figure 4). We also applied the MK tests to the 
annual mean and 95th percentiles of four FDIs for each eco-region to assess their trends (Table 1). Similar to 
the CONUS scale, trends in all the four FDIs on the regional scale also reproduce the long-term increases in the 
observed fire size across most of the eco-regions (Figure 1d), except for eco-regions located in northwestern US, 
like Mixed Wood Shield (eco-region: 5.2) and Plains (eco-region: 5.3). This suggests that either of the four FDIs 

Figure 4.  The normalized annual mean FPI, Fire Weather Index, Energy 
Release Component, and Burning Index over the CONUS and their fitted 
simple linear regressions. The Mann–Kendall slope and the corresponding 
p-value for each Fire danger index is shown.

Eco-region FWI (mean) FWI (95%) FPI (mean) FPI (95%) ERC (mean) ERC (95%) BI (mean) BI (95%)

5.2—Mixed Wood Shield ↑ ↑ ↑* ↑ ↓ ↓* ↑ ↓

5.3—Atlantic Highlands ↑ ↑ ↑* ↑* ↓ ↓ ↑* ↑

6.2—Western Cordillera ↑ ↑ ↑ ↑ ↑* ↑* ↑* ↑*

7.1—Marine West Coast Forest ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑

8.1—Mixed Wood Plains ↑ ↑ ↑* ↑* ↓ ↓ ↑* ↑

8.2—Central Plains ↑ ↑ ↑* ↑* ↑ ↑ ↑* ↑*

8.3—Southeastern Plains ↑ ↑ ↑* ↑* ↑* ↑ ↑* ↑*

8.4—Appalachian Forest ↑ ↑ ↑* ↑* ↑* ↑ ↑* ↑*

8.5—Southeast Coastal Plains ↑ ↑ ↑* ↓ ↑* ↑ ↑* ↑*

9.2—Temperate Prairies ↑ ↓ ↑* ↑* ↑ ↓ ↑* ↑

9.3—West-central Semiarid ↓ ↓ ↓ ↑ ↓ ↓ ↑* ↑

9.4—South-central Semiarid ↑* ↑* ↑* ↑* ↑* ↑ ↑ ↑*

9.5—Texas-Louisiana Coastal Plain ↑ ↑ ↑ ↑ ↑* ↑ ↑* ↑*

9.6—Texas Semiarid Plain ↑ ↑ ↑ ↑ ↑ ↑ ↑* ↑*

10.1—Cold Deserts ↑ ↑ ↑ ↑* ↑* ↑* ↑* ↑*

10.2—Warm Deserts ↑* ↑* ↑* ↑* ↑* ↑* ↑* ↑*

11.1—Mediterranean California ↑ ↑* ↑ ↑* ↑* ↑* ↑* ↑*

12.1—Western Sierra ↑* ↑* ↑* ↑* ↑* ↑* ↑* ↑*

13.1—Upper Gila Mountains ↑* ↑* ↑* ↑* ↑* ↑* ↑* ↑*

15.4—Everglades ↑ ↑ ↑* ↓ ↑* ↑ ↑* ↑*

Note. Arrows with asterisk are significant at the 5% level.

Table 1 
Mann–Kendall Trend Test (Two Sided) for the Annual Mean and 95th Percentile of Four Fire Danger Indices for Each Eco-Region
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is a reliable indicator of annual wildfire changes in terms of fire size (i.e., burned area), and could be used for 
long-term and annual fire forecasts over each eco-region. Down to the seasonal or intra-annual variability, daily 
predictions of the four FDIs at the regional scale also reproduces the observed fire seasonality, as the season of 
high FDIs approximately coincides with the occurrence of historical wildfire across different eco-regions (Figure 
S5 in Supporting Information S1).

4.4.  Future Changes in WRF-Based FDIs

The assessment of the FDI predictability against the wildfire observations in the historical time periods suggests 
that FDIs could be used to investigate the long-term changes of wildfire potential due to climate change, amid 
some regional differences. To encompass the uncertainty due to the choice of FDI, we derived WRF-based, four 
FDIs for both the present day (1995–2004) and future periods (2085–2094) at daily and grid (12 km) scales. 
High FDI values are indicative of critical wildfire weather conditions and are associated with large wildfire size 
across different scales (Figure 3). Consequently, we focus on the climate change impacts on the extreme wildfire 
conditions in this subsection, which are represented by changes in the number of days per year that exceed the 
95th percentiles of the daily predictions of each individual FDI.

The present-day WRF-based FDIs are first evaluated with the predictions based on the observational GridMet 
forcing. Figure 5 shows that the derived 95th percentiles for the four WRF-based FDIs are overall comparable 
and significantly correlate with the corresponding values derived from the observational forcing. In general, 
95th percentiles of different FDIs show consistent spatial pattern, which is highest for the Southwest, followed 
by the Northwest, Midwest and eastern US (Figure 5). The differences in these two sets (Figure 5) of FDIs are 

Figure 5.  The derived 95th percentiles of FPI, Fire Weather Index, Energy Release Component and Burning Index using 1984–2019 observed forcings (a, d, h, and k) 
and WRF simulated present-day forcings (b, e, i, and l), respectively. Their percent differences and Spearman's correlation are shown in panels (c), (f), (j), and (m).
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mainly due to the biases in the WRF simulations of the meteorological forcing such as temperature, relative 
humidity, surface winds and incoming solar radiation. As shown in Figure 2b and discussed in Section 4.2, the 
95th percentile of FDIs is nearly insensitive to the calculated daily precipitation. Among the four FDIs, it is not 
surprising that the WRF-based FPIs have the smallest uncertainty introduced by the input parameters (e.g., small 
negative differences in Figure 5c), as it only depends on RHmin and Tmax. Inclusion of the surface winds at noon 
(Wnoon) in the FWI calculation enhances the negative bias in the WRF-based predictions over most of the domain 
except for some portions of the southwestern US, suggesting that WRF might underestimate Wnoon compared to 
the observations (Figure 5f).

Compared to FPI or FWI, more complex ERC and BI, which account for more input weather variables, show 
negative and positive biases on the eastern and western US, respectively (Figures 5h–5m). The biases in the 
WRF-predicted daily mean surface windspeed (Wdaily) further enhances the negative or positive biases with ERC 
and BI (with Wdaily). This shows that although the predictability of FDI may be generally improved with more 
input parameters considered (Figure 3), it also requires the increased fidelity of those weather and climate model 
simulations, for example, surface wind fields. Out of the four FDIs, ERC is the best represented by WRF with the 
largest correlation and smallest percent differences, despite the uncertainties propagated from the WRF-simulated 
meteorological forcings.

Assuming that the intrinsic biases in the WRF-based FDI predictions would be similar for the present day and 
future projection, the uncertainty in the FDI differences would be small, that is, less than those in Figure 5. 
This allows us to use the WRF calculations of FDIs to quantify the impact of climate change. We calculated the 
changes in the number of days that exceed the 95th percentiles of four FDIs between using WRF-present and 
-future simulated forcings (Figure S6 in Supporting Information S1). The changes in the number of days averaged 
from the four FDIs is shown in Figure 6. The mean occurrence frequency of FDIs > 95th percentile is projected 
to increase by, at least, 10 days per year across the CONUS, implying a longer season of extreme wildfire condi-
tions (Figure 6). Particularly, the potential extreme wildfire days (i.e., FDIs > 95th percentile) in Southern Great 
Plains, including Kansas, Oklahoma, Arkansas, and Texas, are projected to increase by more than 40 days, indi-
cating these places are more vulnerable to the future wildfire risks.

On the contrary, there are few spots along the western and eastern coasts showing slight decreases in number of 
days that FDIs > 95th percentile (Figure 6). They are mainly in Marine West Coast Forest (eco-region: 7.1) and 
Southeast Coastal Plains (eco-region: 8.5). These decreases in wildfire potentials are attributable to the projected 
increase in future precipitation and relative humidity along these coastal regions. This is also in line with the 
projected increases in annual precipitation by other RCMs (e.g., Almazroui et al., 2021; Easterling et al., 2017; 
Gutzler & Robbins, 2011; Lynch et al., 2016). Another reason is that four FDIs, especially for their extreme 
values, are highly sensitive to the relative humidity, a slight change in which can result in very different wildfire 
hazards (Figure 2 and Section 4.2).

Figure 6.  WRF-based changes in the mean number of days that exceed the 95th percentile of four fire danger indices (FDIs) 
from the present day to the late 21st century. Dashed lines denote the directions of changes (i.e., positive or negative) are 
consistent among four FDIs. Changes in the number of days that exceed the 95th percentile for each individual FDI are shown 
in Figure S5 in Supporting Information S1.
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We also investigated the changes in four FDIs over each eco-region. Future FDIs in all eco-regions are, more 
or less, projected to increase in mean (μ), variability (σ), and the 95th percentiles, implying that wildfire hazard 
in future will be a more challenging issue to the nation (Table  2; Figure S7 in Supporting Information  S1). 
Larger variability and higher upper tail values in future FDIs suggest that the values are more spread out to high 
values. In terms of the changes in the μ and σ, four FDIs show consistent results that the semiarid, central south 
(eco-regions: 9.3, 9.4, 9.5, and 9.6) indicate the largest increases. This is roughly consistent with the regional 
drought trends over the last four decades (Ficklin et al., 2015). Conversely, both FPI, ERC, and BI, show a slight 
decrease (<5%) in future mean values over the Marine West Coast Forest (eco-region: 7.1), attributable to the 
projected wetter climate in future.

In addition, projected future increases in four FDIs also reflect considerable seasonal variation across the 
eco-regions (Figures S8–S11 in Supporting Information S1). In southwestern US (eco-regions: 10.1, 10.2, 12.1, 
and 13.1), the largest increases in four FDIs occur in spring and summer, while in northeastern US (eco-regions: 
5.2, 5.3, and 8.3) they occur in fall. Similarly, we derived the mean number of days among four FDIs that exceed 
95th percentiles over 20 eco-regions and four seasons (Figure 7). In the southwestern US, the extreme wildfire 
season has been prolonged by more than 20 days and most increases occur in the spring and summer. In the north-
ern and eastern US, the extreme wildfire season increased by around 10 days, and they mostly occur in summer 
and fall. What is more, a longer fire season in the winter is also evident for some eco-regions, especially in the 
Texas-Louisiana Coastal Plain (eco-region: 9.6).

5.  Summary and Conclusions
FDIs have emerged as important decision-making tools in fire control and risk management. However, under-
standing of their underlying processes and predictive power remains limited. This poses significant challenges 

Eco-region

FWI [percent difference] FPI [percent difference] ERC [percent difference] BI [percent difference]

μ σ 95th μ σ 95th μ σ 95th μ σ 95th

5.2—Mixed Wood Shield 42 52 26 6 3 1 8 4 2 4 4 3

5.3—Atlantic Highlands 34 23 21 4 −1 −2 5 2 0 1 −2 −4

6.2—Western Cordillera 32 16 16 10 7 5 14 5 6 9 5 5

7.1—Marine West Coast Forest 13 6 11 −1 −2 −2 −2 −1 −2 −4 −3 −4

8.1—Mixed Wood Plains 34 39 24 6 1 0 7 3 2 4 2 1

8.2—Central Plains 36 33 31 7 3 1 8 2 5 6 2 2

8.3—Southeastern Plains 32 27 26 4 2 1 9 3 4 8 5 5

8.4—Appalachian Forest 41 35 32 6 2 1 10 6 7 7 5 6

8.5—Southeast Coastal Plains 24 18 21 1 1 1 8 5 4 6 4 4

9.2—Temperate Prairies 42 34 33 12 8 6 11 3 6 9 5 6

9.3—West-central Semiarid 33 16 21 10 8 6 9 2 6 6 5 5

9.4—South-central Semiarid 59 36 41 13 8 7 20 4 11 19 10 13

9.5—Texas-Louisiana Coastal Plain 59 46 58 9 8 6 15 5 10 17 8 10

9.6—Texas Semiarid Plain 75 49 52 19 14 13 26 7 16 32 13 24

10.1—Cold Deserts 22 10 12 10 3 3 11 −2 3 9 4 6

10.2—Warm Deserts 23 4 11 8 1 4 10 −7 2 11 0 5

11.1—Mediterranean California 15 4 5 5 1 2 4 −1 0 5 0 2

12.1—Western Sierra 31 11 17 9 2 5 14 −2 5 14 4 8

13.1—Upper Gila Mountains 35 15 18 11 2 4 16 −4 6 15 5 9

15.4—Everglades 26 22 23 6 3 3 12 7 10 10 4 1

Table 2 
Percent Differences in Mean (μ), Standard Deviation (σ), and 95th Percentile of Four Fire Danger Indices for Each Eco-Region Using Between WRF Present-Day 
and Future Simulations
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in the application of FDIs. In this study, we applied the Delta SA method to four FDIs and found that the most 
dominant parameter is minimum relative humidity for FPI and FWI while daily precipitation for ERC and BI 
(Figure 2a). In addition, extreme values of FWI and BI responds strongly to windspeed, reflecting the determi-
nant role of winds in blowing flame and spreading fire under severe fire conditions. These findings facilitate the 
interpretation of predictions from different indices and provide insights into future improvements. For example, 
wind speed should be taken into account for those FDIs that currently do not include it, especially for severe, 
large fires.

This study investigated the correlation between four FDIs and fire size at three different spatial and temporal 
scales during the 1984–2019 period. The performance among four FDIs are comparable while BI slightly outper-
forms other three FDIs at all scales. In addition, four individual FDIs show better performance in predicting the 
fire size at coarse (e.g., regional and monthly) than at fine (e.g., grid and daily) resolutions. Despite the low corre-
lation between the FDIs and fire size at the fine scale, the interannual variability and long-term trends in the four 
FDIs are consistent with patterns in the number of observed historical fire events (Figure 4). Furthermore, one 
must be cognizant of two important factors when interpreting FDIs: (a) fire danger aims to assess the potential of 
fire occurrence and size at a broad scale in space and time rather than to forecast individual fire behavior; and (b) 
in practice, FDIs are used in conjunction with more detailed fire behavior analysis (e.g., Finney, 2006).

We further derived four FDIs for current (1995–2004) and future (2085–2094) climate conditions using 
high-resolution dynamically downscaled regional climate simulations. We must acknowledge that the results 
we presented may contain uncertainties, considering that the WRF projections utilized in this study were based 
on a single GCM and under the RCP 8.5 scenario. However, the model does not project a significant change in 
relative humidity (our preliminary results) and wind speeds (Wu et al., 2022), and the fuels and NDVIs are static 
in time, thus the changes in FDIs are primarily driven by the changes in air temperature given its relatively high 
sensitivity. Thus, we do not expect the conclusion of this study to be changed even when we use WRF driven by 
other GCMs as used by Brown et al. (2021). Despite these limitations, WRF-based results resemble the spatial 
patterns of observation derived FDIs with a high Spearman's correlation coefficient, demonstrating the adequacy 
of WRF simulation in estimating the FDIs.

To further limit the impact of model biases on estimated FDIs, we focus on the projected changes in FDI values 
and in the number of days when FDIs exceed the 95th percentiles. Results show that the mean and variability of 
four FDIs are projected to increase across all eco-regions except for few places along the coastal region due to 
projected wetter climate in future. Projected increases mainly occur in the spring and summer over southwestern 
US while summer and fall over the northern and eastern US. The future extreme wildfire season is projected to 
become longer, especially in south-central CONUS which show increases in FDIs > 95th percentile by more than 
30 days per year. Many of these projected regions, particularly New Mexico, Texas, and Louisiana, encompass 

Figure 7.  The averaged changes in the number of days exceeding the 95th percentiles over 20 eco-regions and four seasons.
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counties with high social vulnerability (Flanagan et al., 2018); this implies that there is a potential for wildfire to 
exacerbate poverty and elevated safety risks due to crowded housing and limited transportation access.

Data Availability Statement
GridMet forcings are available at https://www.climatologylab.org/gridmet.html (Abatzoglou, 2013); NDVI data 
is from NOAA Climate Data Record and available at https://www.ncei.noaa.gov/metadata/geoportal/rest/meta-
data/item/gov.noaa.ncdc:C01558/html (Vermote, 2019); Monitoring Trends in Burn Severity Project data can be 
downloaded directly from the project website (Eidenshink et al., 2007).
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