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A B S T R A C T

Evacuation is a crucial policy to mitigate wildfire impacts. Understanding traffic dynamics during a wildfire
evacuation can help authorities to improve in improving emergency management plans, thus improving life
safety. In this study, we developed a methodology to extract historical traffic data from vehicle detector stations
and automate the analysis of traffic dynamics for actual wildfire evacuations. This has been implemented in
an open-access tool called Traffic Dynamic Analyser (TDA) which generates speed-density and flow-density
relationships from data using both commonly used macroscopic traffic models as well as machine learning
techniques (e.g., support vector regression). The use of the methodology is demonstrated with a case study of
the 2020 Glass Fire in California, USA. The results from TDA showed a slight reduction in speeds and flows on
US Highway 101 during the evacuation scenario, compared with the routine scenario. Moreover, background
traffic has been shown to play a key role in the 2020 Glass Fire compared with previous wildfire evacuation
scenarios (e.g., the 2019 Kincade fire). The case study showed that the methodology implemented in the TDA
can be used to understand traffic evacuation dynamics in wildfire scenarios and to validate evacuation models.
1. Introduction

Climate change and other anthropogenic factors (such as forest
management and suppression policies) have led to longer wildfire sea-
sons worldwide and increased fire frequency and intensity during these
seasons [1]. Moreover, the wildland-urban interface (WUI) has also
increased [2]. Improved evacuation planning and real-time decision-
making are essential to minimise the negative impacts of these trends
on communities.

Wildfire evacuation models have great potential to support evac-
uation planning and real-time decision-making and traffic manage-
ment. To provide an accurate estimation of the evacuation process,
these models should consider the different aspects of a wildfire event
(i.e., fire and smoke spread, decision-making, pedestrian response and
movement, and traffic), as well as the interaction between these as-
pects [3,4]. Ronchi et al. [4] assessed the potential of existing fire
models, pedestrian models and traffic models to be used in a multi-layer
evacuation simulation model for wildfires. Moreover, researchers have
started to develop integrated models for wildfire evacuation [5–11].
Kuligowski [12] and Ronchi and Gwynne [13] argue that due to our
currently limited understanding of evacuee decision-making processes
and the lack of data to validate the model layers, further research
efforts should focus on data collection and analysis.

∗ Corresponding author.
E-mail address: enrico.ronchi@brand.lth.se (E. Ronchi).

Traffic models are one of the modelling layers that need further
validation datasets. Many macroscopic, mesoscopic and microscopic
traffic models could be used for wildfire evacuation modelling [14].
However, these models have been calibrated using data from non-
evacuation scenarios. Calibration and validation efforts of these models
for emergency scenarios are limited by a lack of data on evacuee
travel behaviour and traffic dynamics during wildfire evacuations [9,
12,15–17]. The importance of these data is highlighted by Dixit and
Wolshon [18], who found a 10%–16% reduction in road capacity in
USA hurricane evacuation events when compared with non-emergency
traffic data. Factors identified as influential of this difference include
unfamiliarity with the mode chosen, increased passenger load of the
vehicle, increased vehicle length or change in desired headway (related
to increased risk perception). Recent studies [19] on traffic dynamics
during a wildfire event show similar trends. Analysis of traffic data
collected both before and after the 2019 Kincade Fire in Sonoma
County, California found that vehicle speeds during the fire event
were reduced by approximately 3.5 km/h for densities between 0 and
64 veh/km/lane and the capacity was reduced by approximately 5%
when compared with routine conditions. However, as this is one event,
further research is needed to confirm these results for other fires.
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Fig. 1. Schematic presentation of the proposed methodology.
(

𝑣

If results are consistent during other wildfire evacuations, they will
eed to be accounted for by traffic models to obtain realistic evacuation
imes. This means that the existing parameters of the speed-density and
low-density relationships (macroscopic modelling) or the car-following
odel (microscopic modelling) would require adjustments.

This paper presents a novel methodology for extracting and
nalysing data from traffic detectors for wildfire evacuation appli-
ations. While previous studies have recognised the need for data
n traffic dynamics during wildfire evacuations, our work addresses
his gap by providing a practical solution. The methodology has been
eveloped and it has been implemented in a dedicated tool (including a
raphical user interface) which is made freely available to all interested
arties.

The aims of this work are (1) to demonstrate the functionalities
f the methodology employed to obtain traffic evacuation datasets in
ildfires from detector data, and (2) to provide open access to a dataset

rom an actual wildfire event used to show the use of the tool, the 2020
lass Fire in California, USA.

. Methodology

Our methodology is schematically summarised in Fig. 1. This section
ntroduces some key modelling concepts needed to interpret the traffic
ynamics. This is followed by an introduction to the traffic database we
sed and by the methodology proposed for data selection and model
itting. The paper focuses on macroscopic traffic modelling since these
odels can be calibrated and validated with data from traffic detector
atabases. Due to their lower computational requirements, they are
eemed suitable for real-time wildfire evacuation applications.

.1. Macroscopic traffic evacuation modelling

In macroscopic models, the traffic dynamics are generally described
y three quantities: (1) the average vehicle speed 𝑣 (km/h), (2) the
raffic density 𝑘 (veh/km/lane), (3) and the traffic flow 𝑞 (veh/h/lane).
hese quantities are calculated for each road segment and for each time
tep by means of three relationships: the conservation of vehicles, the
undamental equation of traffic flow (𝑞 = 𝑘𝑣), and the speed-density
elationship (often referred to as ‘macroscopic models’ themselves).

The first speed-density relationship was proposed by Greenshields
n 1935 [20]. Since then, many have followed. Well-known models
nclude the exponential model, developed by Underwood [21], the
orth-Western model by Drake et al. [22], the bi-linear (triangular)
odel by Daganzo [23], the model by Van Aerde and Rakha [24,25],

he model by Del Castillo and Benítez [26] and the model by Cheng
t al. [27].

Traffic detection systems can generally measure speed, flow, and
ensity. Therefore, it is possible to calibrate the parameters of macro-
copic models by fitting the models onto traffic data and comparing
he obtained values for routine scenarios with those of evacuation
cenarios. Here, only the model by Daganzo [23] (Eq. (1)), the model
y Van Aerde and Rakha [24,25] (Eq. (2)) and the model by Cheng
t al. [27] (Eq. (3)) are presented, as these models are most frequently
sed today and fit best with the data of our case study. Details on
he calibration of additional models are available in [28]. The first
wo models rely only on physical parameters: 𝑣𝑓 (the free-flow speed);
2

𝑐 (the critical speed), 𝑞𝑐 = 𝑘𝑐𝑣𝑐 (the critical flow, capacity), 𝑘𝑐
the critical density), and 𝑘𝑗 (the jam density). The model by Cheng
et al. [27] also relies on the polynomial order 𝑚.
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2.2. Caltrans PEMS database

As an example of a traffic database that can be used as a data
source for wildfire evacuation studies, we adopted the Performance
Measurement System (PeMS) of the California Department of Trans-
portation (Caltrans). This database was established introduced in 1999,
in cooperation with the University of California, Berkeley [29]. Today,
it collects real-time traffic data from more than 46 600 detectors spread
over more than 19 000 vehicle detection stations (VDSs) along the Cal-
ifornian freeway system. The data is stored and made available online
(https://pems.dot.ca.gov/) and can be used to analyse traffic dynamics
and service quality along major highways across the state. Moreover,
the database contains incident records from the California Highway
Patrol and lane closure records from Caltrans Headquarters [29].

The most common detector in PeMS is the loop detector (64% of
VDSs are equipped with inductive loops). A loop detector is essentially
a wire that is installed in a sealed loop-shaped saw cut, just beneath the
road surface [30]. The wire acts like a coil. When a vehicle passes over
the coil, it generates a vortex current in the loop such that the loop’s
inductance decreases by a few percent [30]. Consequently, one loop is
able to detect the traffic flow and the detector occupancy. Some VDSs
are equipped with dual loops, which consist of two loops, typically
positioned three to four metres apart from each other [31]. These dual
loops can also obtain the vehicle speed as the ratio of the loop distance
and the detection delay (𝑣 = 𝛥𝑥∕𝛥𝑡).

While no specific studies could be identified determining the accu-
racy detectors used by Caltrans, other studies have demonstrated the
high level of accuracy of inductive loops in general. Studies on similar
loops in Minnesota show that the flow accuracy lies between 97.0 and
99.9% when comparing it with a manual count from video footage and
that the speed accuracy lies between 96.7 and 98.8% when compared to
the verified speedometer of a probe vehicle [32]. Research performed
in Texas [30] reveals a mean error in vehicle speed of approximately
2.4 km/h (1.5 mph), in comparison to an infrared sensor speed trap.

Based on the studies mentioned above, traffic detector data can be
considered among the most accurate data available to investigate traffic
dynamics and was for this reason been chosen in this study.

2.3. Data selection

With the database identified, the next step is to select a dataset from
PeMS for a specific wildfire event to understand traffic dynamics under
emergency conditions and compare it with the traffic dynamics under

routine conditions. This requires the identification of a set time frame

https://pems.dot.ca.gov/
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(e.g., before, during, and after the fire event) and specific freeways of
interest (e.g., one or two freeways that are either directly within or
adjacent to the evacuation zones). Once the time frame and location
are set, the data selection process can begin. This process considers the
following five aspects:

1. Detector position.
Since the traffic dynamics on the mainline (i.e., the primary
travel lanes of a highway) and ramps (junctions) are expected to
differ, only the detector stations on the mainline of the highway
are considered for this demonstration.

2. Speed measurement
Not all detector stations measure the speed. For those that do
not, PeMS employ an algorithm to estimate the speed from data
from nearby stations (via the Daily Length Profile Algorithm by
Erik van Zwet, [29]). To avoid noise and bias, only detector
stations that measure the speed are considered.

3. Detector health
The measurements of a detector station might be erroneous.
The PeMS database automatically identifies unreliable data and
calculates the health of the data (i.e., the percentage of reliable
data) that is produced by the detector station. To avoid unreli-
able results, only detector stations with a health of 97% or more
during the measurement campaigns, are considered.

4. Visual inspection
The detector stations that meet the three conditions above are
then subjected to a visual inspection. First, they are located on
satellite images to ensure that all lanes belong to the mainline,
and not to a junction or weaving zone. Second, graphs are
produced that display the evolution of speed, flow, and density
over time for each lane, as well as graphs that relate the speed,
flow, and density. Only stations for which the graphs show
physically credible results are considered.

5. Spacing
Stations that are located close to each other will record cor-
related data because the same vehicles will be recorded, at
almost the same moment. A selection is made to include as many
stations as possible while maintaining a spacing of at least 2 km
between the selected stations. This choice was a compromise
between not discarding too much data and avoiding data being
too correlated.

The flowchart in Fig. 4 summarises this process and the outcome
elated to the case study (see Section 4).

.4. Data analysis

The methodology proposed here includes a dedicated procedure for
odel fitting which accounts for the peculiarities of the data under

onsideration. The macroscopic models 𝑣 = 𝑓 (𝑘) can be fitted to traffic
data by minimising the sum of squares (𝑆) of the residuals (error on the
speed predictions). We used the Levenberg–Marquardt algorithm [33,
34]. The residuals are weighted as proposed by Qu et al. [35] to ensure
that the model fits well over the full range of densities (see Eq. (4) [35],
where all 𝑚 data points are ordered so that 𝑘𝑖 ≤ 𝑘𝑗 when 𝑖 < 𝑗). Without
weighting, the models would typically fit poorly in the high-density
region due to the imbalance that is often observed in traffic data.

𝑆 =
𝑚
∑

𝑖
𝑤𝑖

(

𝑣𝑖 − 𝑓 (𝑘𝑖)
)2 (4)

where

𝑤𝑖 =

⎧

⎪

⎨

⎪

(𝑘2 − 𝑘1) 𝑖 = 1
(𝑘𝑖+1 − 𝑘𝑖−1)∕2 𝑖 = 2, 3,… , 𝑚 − 1
3

⎩

(𝑘𝑚 − 𝑘𝑚−1) 𝑖 = 𝑚
It is also possible to compare the trends of the evacuation data
and routine data without assuming an underlying speed-density rela-
tionship. To do so, two machine learning methods are applied. The
first method is Gaussian Kernel Smoothing (GKS), a commonly used
weighted moving average. However, the weights of the Gaussian ker-
nel are also multiplied by the weights mentioned above (Eq. (4)) to
correct for the imbalanced data. The same weights are applied to the
moving quantiles, which are calculated by linear interpolation from the
empirical cumulative distribution function, as proposed by Parzen [36].
This way, the asymmetry and heteroscedasticity of the variance are
disclosed without assuming its distribution. In the second method, the
regression is obtained from support vector regression (SVR). Here, the
scikit-learn package [37] is used to establish the regressions. To obtain
non-parametric regressions, Gaussian (also called radial basis function)
kernels were chosen.

The optimal hyperparameters (the kernel length scale 𝜎 of the GKS
and the kernel coefficient 𝛾 and regularisation parameter 𝐶 of the
SVR) were found by means of a grid search, during which the average
weighted sum of squares (Eq. (4)) from a five-fold cross-validation was
minimised.

The fitted models and regression lines of the evacuation data and the
routine data can then be compared to discuss the differences in traffic
dynamics. One reason that might partly explain observed differences
could be a change in the average vehicle lengths. Therefore, this
method proposes to analyse the vehicle lengths as well. The lengths
can be calculated as given in Eq. (5) [38,39]:

𝑙 = 𝑣𝑜
𝑞

(5)

where 𝑙 is the arithmetic average length (m/veh) of all vehicles pass-
ing by the detector, 𝑣 is the average speed (m/s), 𝑜 is the detectors
ccupancy (–), which is the fraction of the sampling period for which
vehicle is present at the detector location, and 𝑞 is the flow (veh/s)

passing by the detector (all during the five-minute interval).

3. Traffic dynamics analyser

The methodology presented in Section 2 was implemented in a
tool with a graphical user interface (see Fig. 2). This tool allows the
user to extract PeMS data from different vehicle detection stations at
different periods (scenarios) and to automate the analysis. The tool,
called Traffic Data Analyser (TDA), is released in open access on Github
and Zenodo [40]. What follows is a description of the different uses of
the methodology for traffic evacuation data analysis using TDA.

The user must specify their PeMS account details, the identification
number of the vehicle detector stations they intend to analyse, as
well as the timespans they are interested in. The TDA is then able
to log into the platform and automatically extract all required data.
Hereafter, it processes the data by executing the necessary conversions
and calculates the traffic density and the average vehicle lengths. If
the user has used TDA before, they can also use the spreadsheet that
they generated before, rather than downloading and processing all data
again. Next, TDA generates the graphs as requested by the user.

Since our proposed methodology advises the user to visually inspect
the relationships between the fundamental variables, the tool has been
developed to generate graphs for each detector station individually.
Speed, flow, and densities can be plotted for each lane of these stations,
both as time series and as scatterplots. These graphs are valuable to
perform a visual inspection of the data.

Moreover, TDA can aggregate the speed, flow, and density data on
the scenario-level (evacuation versus routine) and provide the scat-
terplots. It also allows fitting (predefined or user-defined) models in
accordance with our proposed methodology (see Section 2.4). In addi-
tion to the graphs, a second spreadsheet is created that contains the
values of the fitted parameters, as well as the confidence intervals
of these values. Examples of these graphs and tables are shown in

Section 4.
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Fig. 2. Graphical user interface of the traffic data analyser.
4. The 2020 Glass Fire case study

In this section, we demonstrate the methodology through a case
study: the 2020 Glass Fire. The Glass Fire was chosen as it led to a
large-scale evacuation. Moreover, US 101, which is adjacent to the
evacuation zone, is equipped with dual loop detectors, allowing for the
measurement of flow, speed, and occupancy at the time of the evacu-
ation. This section provides a brief overview of the event, followed by
a presentation of the data selection process. This section ends with an
analysis of the traffic dynamics on US 101 during the routine scenario
(before the fire event) and the evacuation scenario (during the fire
event). The goal is to identify if similar trends are found in the 2020
Glass Fire as were found in the Kincade Fire [19] as well as previous
hurricane events [18].

4.1. Overview of the fire event

The 2020 Glass Fire started on 27 September 2020 just before 4
am and continued burning for 24 days until it was fully contained
(on 20 October 2020) [41]. The ignition point was located in Napa
County, California, United States, but the fire expanded rapidly to
Sonoma County, due to the extremely high temperatures, strong winds
and unprecedented drought [42]. By the second day, approximately
14 700 hectares (36 400 acres) of land has been affected, which is more
than half of the eventually affected area (27 300 hectares or 67 500
acres) [41]. The ignition point and eventual perimeter of the fire are
displayed in Fig. 3. On the second day, the fire reached the towns of
4

Santa Rosa, Calistoga, and Saint Helena. In total, 1555 structures were
destroyed [41] (of which 42% were residential) and 282 structures
were damaged (of which 57% were residential),1 making this fire the
tenth most destructive wildfire in California to date [43].

Both Sonoma County and Napa County are divided into zones to
manage evacuations during emergencies. In Sonoma County, all evac-
uation orders were issued on the 27th and the 28th of September [44],
while in Napa, the last order was issued on the 4th of October. All
orders were lifted between the 2nd and the 19th of October.2 The
evacuation zones for which a warning or order were issued, are shown
in Fig. 3.

4.2. Data selection for the fire event

Only one route in the vicinity of the evacuation zones is equipped
with vehicle detection stations (VDSs): the federal highway US 101.
This highway runs straight through Sonoma County and it is the
only route with multiple lanes in each direction and grade-separated
junctions. It has a speed limit of 65 mi/h (≈105 km/h).

There are 301 vehicle detection stations along which congestion
occurs in Sonoma County. All were considered in the selection process
presented in Section 2.3. The outcome is summarised in the flowchart
in Fig. 4. Eventually, fifteen stations were discarded after the visual
inspection. For seven of these stations, detectors were present on an

1 Glass Fire Incident Update, posted on Twitter by CAL FIRE.
2 News updates, posted online by ABC7 News.
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Fig. 3. Map (ESRI) of the wildfire incident. The evacuation warnings and orders for
both Sonoma [44] and Napa (News updates, posted online by Bay City News) are
coloured yellow and red respectively. The ignition point is marked with a flame symbol
and the final perimeter of the fire is drawn in black [41]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 1
Time periods of data extraction (day/month) and the corresponding flow.

Scenario Start End Week Traffic flow (veh/day)

Routine 08/31 09/02 36 22 399
09/14 09/16 38 22 140
09/21 09/23 39 22 690

Evacuation 09/28 09/30 40 22 295

on-ramp, an off-ramp, or a weaving zone, despite them being labelled
as ‘‘mainline’’ in the PeMS database. The other eight discarded stations
had one or more detectors that produced unreliable data. The final
selection of VDSs is presented in Fig. 3.

The first evacuation orders were issued on Sunday the 27th of
September. After analysing the traffic flow, it was decided to consider
an evacuation scenario that starts on Monday the 28th and ends on
Wednesday the 30th of September (Week 40). The reason for this
decision is explained in more detail in Section 4.3. To compare the data
with normal traffic, routine data is extracted one week earlier (Week
39), two weeks earlier (Week 38), and four weeks earlier (Week 36),
from Monday to Wednesday as well. The reason why Week 37 is not
included is because of Labor Day, on Monday the 7th of September.
This day, traffic flow is significantly different and traffic dynamics
are also considered to differ (as ‘‘weekend’’-dynamics are expected).
Table 1 summarises the time periods of data extraction. The average
flow during these periods is also shown.

PeMS also provides incident reports. In this case, most of the
incidents are vehicles or objects that briefly obstruct the road. None
5

of the incidents led to lane closures or influenced the traffic dynamics
considerably. A complete list of incidents is provided in [28].

4.3. Analysis of the traffic dynamics

We have extracted, processed and published the data in open access
[45]. This section analyses the data.

Fig. 5 shows the hourly flow and speed of the traffic on US 101
before and during the evacuation. The flows and speeds are obtained
by averaging the values of all twenty-five selected detectors. Curves of
the different weeks are overlaid to demonstrate the recurring trends.
The earliest week is Week 34, on which the new school year started.
It can be easily noticed that the routine traffic flows are regular, as
all blue curves overlap well. The one exception is Monday the 7th of
September 2020 (Week 37), as it is a national holiday (Labor Day).

The fire stared early on Sunday the 27th of September (Week 40).
Apart from relatively small evacuation orders at a distance equal to 25
km from US 101, no orders are issued until late in the evening [41].
The effect of the wildfire on the traffic flow is clearly visible during
the last two hours. However, during these two hours, the traffic flow is
rather low (i.e., no densities beyond 25 veh/km/lane are recorded). It
was therefore decided to consider the start of the evacuation scenario
on Monday (see Table 1) and end on Wednesday. This also eliminates
the effect of the weekend on the traffic dynamics.

Fig. 6 shows the scatterplot of the extracted data. Clearly, conges-
tion occurs during the evacuation (as well as during routine conditions).
However, most of the data points have a low traffic density (98.6% of
all points have a density below 20 veh/km/lane). This confirms the
need for weighting when fitting the speed-density relationship to the
data (see Section 2.4).

To apply our suggested methodology, the models by Daganzo, Van
Aerde and Rakha, and Cheng et al. are fitted to the data using the
TDA. The results are presented graphically in Fig. 6 and numerically in
Table 2. The table shows the optimal model parameters, the confidence
margins and the ratios 𝜑, which represent the value of the parameter
during the evacuation scenario, relative to the value during the routine
scenario.

The trends of the data can also be presented without assuming a
relationship between speed and density. Fig. 7 presents the weighted
moving average achieved by Gaussian kernel smoothing (GKS). A ker-
nel length scale 𝜎 of 2.750 veh/km/lane was used. The coloured lines
represent the average values and the coloured surfaces are bounded by
the 5 to 95 percentiles. Fig. 7 also shows the lines obtained with support
vector regression (SVR). The kernel coefficient 𝛾 and the regularisation
parameter 𝐶 are 60 and 0.028 respectively for the evacuation scenario
and 94 and 0.024 for the routine scenario.

Fig. 7 shows slight differences between the two scenarios. Compar-
ing evacuation and routine scenarios, the average speed reduction for
densities between 0 and 60 veh/km/lane equals 1.07 km/h for GKS
and 1.23 km/h for SVR. The capacity reduces by 1.9% (GKS) or 3.1%
(SVR). The parametric model fits show small differences between the
scenarios as well (see Fig. 6 and Table 2).

Fig. 8 visualises the sample distribution of average vehicle lengths
for the evacuation scenario and the routine scenario. Both the his-
togram and the cumulative probability curve are constructed by weight-
ing the average vehicle lengths with the flow of the interval and lane
in question to obtain car-based distributions. The histograms of both
scenarios show a substantial overlap of 96.0%, suggesting a minimal
disparity in the distributions of vehicle lengths.

5. Discussion

Overall, the methodology and accompanying TDA tool were used to
collect and analyse traffic data before and after the 2020 Glass Fire in
Sonoma County, California. The process allows the user to input the
detector stations as well as the dates of the different scenarios and
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Fig. 4. Flowchart of the selection process for the vehicle detection stations for our case study.
Fig. 5. Hourly flow and speed, averaged over all detectors, before and during the wildfire. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Table 2
Best fit values and confidence margin of the model parameters.

Model Parameters Best fit ± 95% confidence margin 𝜑 (%)

Routine Evacuation

Daganzo [23]

𝑣𝑓 (km/h) 102.1 ±0.12 101.7 ±0.21 99.6
𝑘𝑐 (veh/km/lane) 14.1 ±0.03 13.6 ±0.05 96.3
𝑘𝑗 (veh/km/lane) 192.2 ±2.14 230.8 ±7.58 120.1

WRMSE (km/h) 6.19 6.98

Van Aerde & Rakha [24]

𝑣𝑓 (km/h) 105.8 ±0.17 105.0 ±0.29 99.2
𝑎 (km lane/veh) 4.58E−03 ±6.9E−05 4.16E−03 ±1.5E−04 90.7
𝑏 (km2 lane/veh/h) 1.59E−01 ±7.7E−03 1.29E−01 ±1.3E−02 81.0
𝑐 (h lane/veh) 5.83E−04 ±3.0E−06 6.25E−04 ±6.3E−06 107.3

WRMSE (km/h) 5.96 6.77

Cheng et al. [27]

𝑣𝑓 (km/h) 109.2 ±0.19 109.0 ±0.34 99.8
𝑘𝑐 (veh/km/lane) 24.5 ±0.06 24.0 ±0.12 97.6
𝑚 (–) 2.27 ±0.01 2.25 ±0.03 99.2

WRMSE (km/h) 6.36 7.32
obtain the spreadsheet and the graphs for each station (individually
and collectively) to better understand traffic dynamics of evacuation
scenarios and routine scenarios on highways in the state of California.
As the TDA is released in open access, the tool and its accompanying
methodology are presented here to promote its use. With TDA, past
6

and future fires in California can be analysed in a similar way to better
understand traffic dynamics in different types of fires, communities,
highways, and evacuation scenarios. It is hoped that the methodology
presented can be applied to other traffic databases around the world.
The use of the TDA allows for a comprehensive understanding of the
potential change in speed, flow, and occupancy on highways during

emergency events, such that existing traffic models can be updated
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Fig. 6. Speed-density data and the fitted models for the evacuation data and the routine data. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Fig. 7. Non-parametric regression, obtained by GKS (left) and SVR (right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Fig. 8. Probability density and cumulative probability of the average vehicle length. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
to account for evacuation scenarios. In turn, these and future find-
ings can be used to improve the way in which communities plan for
wildfires before an event and emergency authorities make decisions
about evacuation, including instituting traffic management solutions,
in real-time.

The proposed methodology and TDA were then implemented in
a case study focused on the 2020 Glass fire. Results from the TDA
demonstrate an average reduction in speed of 1.25 km/h (GKS) to
1.72 km/h (SVR) when comparing evacuation scenarios with routine
7

scenarios. The road capacity drops by 2.1% (GKS) to 4.7% (SVR).
However, this difference was smaller than that identified by Rohaert
et al. [19] in their study of the 2019 Kincade Fire (i.e., a study that also
analysed movement along US 101). The difference between the Kincade
Fire and the Glass Fire is likely related to the position of the fire and
evacuation zones in relation to US 101. During the Kincade Fire, the
affected evacuation zones surrounded both sides (i.e., east and west)
of US 101; whereas in the Glass Fire, the highway was only in close
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vicinity to the affected areas (on the east). Consequently, the proportion
of background traffic is expected to be higher for the 2020 fire.

Also, previous studies of wildfire and hurricane events suggest that
evacuees often choose to leave with larger-sized vehicles (e.g., boat
trailers, caravans, campers, or vans) during evacuation [46,47]. This
might (partially) explain the reduced road capacity when the flow is
expressed in vehicles rather than passenger car equivalents. During
the 2019 Kincade Fire, the distribution of vehicle lengths changed
significantly, while this is not the case for the 2020 Glass Fire (see
Fig. 8). Therefore, Fig. 8 substantiates the assumption that ‘background
traffic’ was more dominant on US 101 during the Glass Fire evacuation,
likely diluting the effect of evacuee movement on the traffic dynamics.
This explains why the difference in speed between the two scenarios is
small.

The results of this work indicate the need for dedicated calibration
and validation efforts of traffic models used to predict the evacuation
time during wildfires. The distance of the fire location and evacuation
zones from the impacted roads and highways is one of the factors
influencing the results of traffic models. This finding also aligns with
the results from the recent study by Hou et al. [48], which found
that the impact on traffic performance reduces when the fire distance
increases. The PeMS database collects traffic data from specific high-
ways and freeways equipped with vehicle detection stations. It does
not collect data from the other roads located closer to the fire region
(e.g., collector or arterial roads). To compensate for this limitation
with the PeMS database, other complementary datasets, such as GPS
trajectory data [49], can help to measure traffic performance. Using
complementary data sources can also improve the performance of the
wildfire evacuation models.

As with any study, it is important to acknowledge the limitations
associated with this work. One of them, in particular, is the fact that US
101 is further away from the affected area in the 2019 Glass Fire. Also,
the PeMS database only collects traffic data from freeways, whereas in
many cases the important traffic dynamics also occur on smaller roads.
In this case, we only have traffic movement data on the main roads,
rather than data from all the roads used for evacuation.

6. Conclusion

This paper presents a novel methodology for the analysis of traffic
data in wildfire evacuation scenarios, based on both fitting paramet-
ric macroscopic traffic models and non-parametric machine learning
regressions. The methodology has been implemented in a tool called
Traffic Dynamics Analyser (TDA), which is made available for free for
all interested parties [40] and has been demonstrated through a case
study of the 2020 Glass Fire. The data from this case study has also been
made available openly [45]. Results show the need for understanding
traffic evacuation dynamics during wildfires and how this can be
reflected in wildfire evacuation model development, calibration, and
validation efforts.
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